The main objective was to study the anticorrosion performance of poly(o-toluidine)/nano ZrO2/epoxy composite coating.Poly(o-toluidine)/nano ZrO2 composite was prepared by in situ polymerization of o-toluidine mono...The main objective was to study the anticorrosion performance of poly(o-toluidine)/nano ZrO2/epoxy composite coating.Poly(o-toluidine)/nano ZrO2 composite was prepared by in situ polymerization of o-toluidine monomer in the presence of nano ZrO2 particles.Fourier transformation infrared spectroscopy(FT-IR),UV-visible spectroscopy(UV-vis),X-ray diffraction(XRD),Scanning electron microscopy(SEM),and Thermogravimetric analysis(TGA) were used to characterize the composition and structure of the composite.Poly(o-toluidine)/nano ZrO2 composite was mixed with epoxy resin through a solution blending method and the three components poly(o-toluidine)/nano ZrO2/epoxy composite coating was coated onto the surface of steel sample by the brush coating method.The anticorrosion performance of poly(o-toluidine)/nano ZrO2/epoxy composite coating on steel sample was studied by polarization curve and electrochemical impendence spectroscopy in 3.5% Na Cl solution as corrosion environment and also compared with that of poly(o-toluidine)/epoxy composite coating and pure epoxy coating.It was observed that the composite coating containing poly(otoluidine)/nano ZrO2 composite has got higher corrosion protection ability than that of poly(o-toluidine).The electrochemical measurement results demonstrated that poly(o-toluidine) fillers improve the electrochemical anticorrosion performance of epoxy coating and the addition of nano ZrO2 particles increases the tortuosity of the diffusion pathway of corrosive substances.展开更多
The effect of rare earth(RE) additives on the quality of brush plated coating was studied by adding RE into brush plating solution. The results show that RE make the surface smooth and shiny, reduce residual stress ...The effect of rare earth(RE) additives on the quality of brush plated coating was studied by adding RE into brush plating solution. The results show that RE make the surface smooth and shiny, reduce residual stress within the coating and reinforced bond, and increase the wearability and corrosion resistance.展开更多
The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositi...The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.展开更多
The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focus...The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focuses on the development of sulphonated polyether ether ketone(SPEEK) based membranes and caesium salt of silico-tungstic acid(Cs Si WA) matrix compared with one of the transition metal oxides such as titanium dioxide(TiO2), silicon dioxide(SiO2) and zirconium dioxide(ZrO2). The resultant membranes have been characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, ion exchange capacity(IEC), water uptake and atomic force microscopy. Comparative studies on the performance of MEAs were also conducted utilizing impregnation-reduction and conventional brush coating methods. The PEM electrolysis performance of SPEEK-Cs Si WA-ZrO2 composite membrane was more superior than that of other membranes involved in this study. Electrochemical characterization shows that a maximum current density of 1.4 A/cm^2 was achieved at 60 °C, explained by an increased concentration of protonic sites available at the interface.展开更多
In this work, a binary-mixed-brushes-coated (BBC) capillary with switchable protein adsorption/desorption properties was developed and applied for on-line preconcentration of proteins. Firstly, amine-terminated poly(2...In this work, a binary-mixed-brushes-coated (BBC) capillary with switchable protein adsorption/desorption properties was developed and applied for on-line preconcentration of proteins. Firstly, amine-terminated poly(2-methyl-2-oxazoline)(PMOXA-NH2) and thiolterminated poly(acrylic acid)(PAA-SH) were synthesized by using cationic ring-opening polymerization (CROP) and reversible addition fragmentation chain transfer (RAFT) polymerization, respectively. Then, the BBC capillary based on poly(2-methyl-2-oxazoline)(PMOXA) and poly(acrylic acid)(PAA) was prepared by sequentially grafting of PMOXA-NH2 and PAA-SH onto fused-silica capillary inner surface through poly(dopamine)(PDA) as an anchor. The obtained PMOXA/PAA coating formed on the capillary or capillary's raw material was characterized in terms of the thickness, surface chemical composition by using scanning electron microscope (SEM) and X-ray photoelectron spectrum (XPS). The switchable protein adsorption/desorption performance of the BBC capillary was investigated by using fluorescence microscope under di erent solutions with certain pH and ionic strength(I). The results showed that bovine serum albumin (BSA) could be adsorbed on BBC capillary at pH=5.0 (I=10^-5 mol/L), and then the adsorbed BSA could be released at pH=9.0 (I=0.1 mol/L). This switchable protein adsorption/desorption property of coated capillary was then used to preconcentrate proteins on-line for increasing the detection sensitivity of BSA in capillary electrophoresis (CE). With this method, a sensitivity enhancement factor (SEF) more than 5000 for BSA detection was obtained.展开更多
The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems.In fact,effective solutions to friction and wear related questions can be found in our everyd...The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems.In fact,effective solutions to friction and wear related questions can be found in our everyday life.An important part is related to skin tribology,as the human skin is frequently one of the interacting surfaces in relative motion.People seem to solve these problems related to skin friction based upon a trial-and-error strategy and based upon on our sense for touch.The question of course rises whether or not a trained tribologist would make different choices based upon a science based strategy?In other words:Is skin friction part of the larger knowledge base that has been generated during the last decades by tribology research groups and which could be referred to as Science Friction?This paper discusses the specific nature of tribological systems that include the human skin and argues that the living nature of skin limits the use of conventional methods.Skin tribology requires in vivo,subject and anatomical location specific test methods.Current predictive friction models can only partially be applied to predict in vivo skin friction.The reason for this is found in limited understanding of the contact mechanics at the asperity level of product-skin interactions.A recently developed model gives the building blocks for enhanced understanding of friction at the micro scale.Only largely simplified power law based equations are currently available as general engineering tools.Finally,the need for friction control is illustrated by elaborating on the role of skin friction on discomfort and comfort.Surface texturing and polymer brush coatings are promising directions as they provide way and means to tailor friction in sliding contacts without the need of major changes to the product.展开更多
A hafnium strontium oxide(HfSrO)liquid crystal(LC)alignment film was efficiently created through brush coating,and its ability to change the LC alignment direction was confirmed.A brush was applied to HfSrO sol coated...A hafnium strontium oxide(HfSrO)liquid crystal(LC)alignment film was efficiently created through brush coating,and its ability to change the LC alignment direction was confirmed.A brush was applied to HfSrO sol coated on an indium-tin oxide substrate,after which the coating was solidified at var-ious curing temperatures.It was confirmed that a directional micro/nanostructure was formed above 280°C due to the shear stresses caused by the movement of the brush hairs.Surface chemical changes were analyzed by using X-ray photoelectron spectroscopy and contact angle measurements.As the curing temperature increased,the prevalence of oxygen bonds increased and the contact angle decreased,thereby increasing the surface energy.The anisotropic boundary of the micro-grooves and the van der Waals forces due to an increase in surface energy changed the alignment direction of LC mole-cules from vertical to horizontal,as verified through polarized optical microscopy and pretilt angle measurements.Thus,the efficiency of the brush-coating method,which dramatically simplifies the LC alignment film process,was confirmed.The homeotropic/homogeneous LC alignment property of the HfSrO film produced through brush coating depending on the curing temperature provides an innovative approach for LC alignment.展开更多
基金Funded by the Innovation Project of Guangxi Graduate Education(No.YCSZ2014202)
文摘The main objective was to study the anticorrosion performance of poly(o-toluidine)/nano ZrO2/epoxy composite coating.Poly(o-toluidine)/nano ZrO2 composite was prepared by in situ polymerization of o-toluidine monomer in the presence of nano ZrO2 particles.Fourier transformation infrared spectroscopy(FT-IR),UV-visible spectroscopy(UV-vis),X-ray diffraction(XRD),Scanning electron microscopy(SEM),and Thermogravimetric analysis(TGA) were used to characterize the composition and structure of the composite.Poly(o-toluidine)/nano ZrO2 composite was mixed with epoxy resin through a solution blending method and the three components poly(o-toluidine)/nano ZrO2/epoxy composite coating was coated onto the surface of steel sample by the brush coating method.The anticorrosion performance of poly(o-toluidine)/nano ZrO2/epoxy composite coating on steel sample was studied by polarization curve and electrochemical impendence spectroscopy in 3.5% Na Cl solution as corrosion environment and also compared with that of poly(o-toluidine)/epoxy composite coating and pure epoxy coating.It was observed that the composite coating containing poly(otoluidine)/nano ZrO2 composite has got higher corrosion protection ability than that of poly(o-toluidine).The electrochemical measurement results demonstrated that poly(o-toluidine) fillers improve the electrochemical anticorrosion performance of epoxy coating and the addition of nano ZrO2 particles increases the tortuosity of the diffusion pathway of corrosive substances.
文摘The effect of rare earth(RE) additives on the quality of brush plated coating was studied by adding RE into brush plating solution. The results show that RE make the surface smooth and shiny, reduce residual stress within the coating and reinforced bond, and increase the wearability and corrosion resistance.
文摘The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.
文摘The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focuses on the development of sulphonated polyether ether ketone(SPEEK) based membranes and caesium salt of silico-tungstic acid(Cs Si WA) matrix compared with one of the transition metal oxides such as titanium dioxide(TiO2), silicon dioxide(SiO2) and zirconium dioxide(ZrO2). The resultant membranes have been characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, ion exchange capacity(IEC), water uptake and atomic force microscopy. Comparative studies on the performance of MEAs were also conducted utilizing impregnation-reduction and conventional brush coating methods. The PEM electrolysis performance of SPEEK-Cs Si WA-ZrO2 composite membrane was more superior than that of other membranes involved in this study. Electrochemical characterization shows that a maximum current density of 1.4 A/cm^2 was achieved at 60 °C, explained by an increased concentration of protonic sites available at the interface.
基金supported by the National Natural Science Foundation of China (No.21674102)
文摘In this work, a binary-mixed-brushes-coated (BBC) capillary with switchable protein adsorption/desorption properties was developed and applied for on-line preconcentration of proteins. Firstly, amine-terminated poly(2-methyl-2-oxazoline)(PMOXA-NH2) and thiolterminated poly(acrylic acid)(PAA-SH) were synthesized by using cationic ring-opening polymerization (CROP) and reversible addition fragmentation chain transfer (RAFT) polymerization, respectively. Then, the BBC capillary based on poly(2-methyl-2-oxazoline)(PMOXA) and poly(acrylic acid)(PAA) was prepared by sequentially grafting of PMOXA-NH2 and PAA-SH onto fused-silica capillary inner surface through poly(dopamine)(PDA) as an anchor. The obtained PMOXA/PAA coating formed on the capillary or capillary's raw material was characterized in terms of the thickness, surface chemical composition by using scanning electron microscope (SEM) and X-ray photoelectron spectrum (XPS). The switchable protein adsorption/desorption performance of the BBC capillary was investigated by using fluorescence microscope under di erent solutions with certain pH and ionic strength(I). The results showed that bovine serum albumin (BSA) could be adsorbed on BBC capillary at pH=5.0 (I=10^-5 mol/L), and then the adsorbed BSA could be released at pH=9.0 (I=0.1 mol/L). This switchable protein adsorption/desorption property of coated capillary was then used to preconcentrate proteins on-line for increasing the detection sensitivity of BSA in capillary electrophoresis (CE). With this method, a sensitivity enhancement factor (SEF) more than 5000 for BSA detection was obtained.
文摘The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems.In fact,effective solutions to friction and wear related questions can be found in our everyday life.An important part is related to skin tribology,as the human skin is frequently one of the interacting surfaces in relative motion.People seem to solve these problems related to skin friction based upon a trial-and-error strategy and based upon on our sense for touch.The question of course rises whether or not a trained tribologist would make different choices based upon a science based strategy?In other words:Is skin friction part of the larger knowledge base that has been generated during the last decades by tribology research groups and which could be referred to as Science Friction?This paper discusses the specific nature of tribological systems that include the human skin and argues that the living nature of skin limits the use of conventional methods.Skin tribology requires in vivo,subject and anatomical location specific test methods.Current predictive friction models can only partially be applied to predict in vivo skin friction.The reason for this is found in limited understanding of the contact mechanics at the asperity level of product-skin interactions.A recently developed model gives the building blocks for enhanced understanding of friction at the micro scale.Only largely simplified power law based equations are currently available as general engineering tools.Finally,the need for friction control is illustrated by elaborating on the role of skin friction on discomfort and comfort.Surface texturing and polymer brush coatings are promising directions as they provide way and means to tailor friction in sliding contacts without the need of major changes to the product.
基金This work was supported by the National Research Foundation of Korea[2020R1G1A1013604].
文摘A hafnium strontium oxide(HfSrO)liquid crystal(LC)alignment film was efficiently created through brush coating,and its ability to change the LC alignment direction was confirmed.A brush was applied to HfSrO sol coated on an indium-tin oxide substrate,after which the coating was solidified at var-ious curing temperatures.It was confirmed that a directional micro/nanostructure was formed above 280°C due to the shear stresses caused by the movement of the brush hairs.Surface chemical changes were analyzed by using X-ray photoelectron spectroscopy and contact angle measurements.As the curing temperature increased,the prevalence of oxygen bonds increased and the contact angle decreased,thereby increasing the surface energy.The anisotropic boundary of the micro-grooves and the van der Waals forces due to an increase in surface energy changed the alignment direction of LC mole-cules from vertical to horizontal,as verified through polarized optical microscopy and pretilt angle measurements.Thus,the efficiency of the brush-coating method,which dramatically simplifies the LC alignment film process,was confirmed.The homeotropic/homogeneous LC alignment property of the HfSrO film produced through brush coating depending on the curing temperature provides an innovative approach for LC alignment.