期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Estimation of diameter and surface area flux of bubbles based on operational gas dispersion parameters by using regression and ANFIS 被引量:4
1
作者 B.Shahbazi B.Rezai +2 位作者 S.Chehreh Chelgani S.M.Javad Koleini M.Noaparast 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期343-348,共6页
Adaptive neuro fuzzy inference system (ANFIS) procedure and regression methods were used to predict the Sauter mean bubble (bubble diameter) and surface area flux of the bubble in a flotation process. The operational ... Adaptive neuro fuzzy inference system (ANFIS) procedure and regression methods were used to predict the Sauter mean bubble (bubble diameter) and surface area flux of the bubble in a flotation process. The operational conditions of flotation, impeller peripheral speed, superficial gas velocity, and weight percent solids were used as inputs of methods. By using the mentioned operational conditions, the non linear regression results showed that Sauter mean, and surface area flux of the bubble are predictable variables, where the coefficients of determination (R 2 ) are 0.57 and 0.74, respectively. To increase the accuracy of prediction an ANFIS model with cluster radius of 0.4 was applied. ANFIS model was capable of estimating both Sauter mean, and surface area flux of the bubble, where in a testing stage, satisfactory correlations, R 2 = 0.78, and 0.86, were achieved for Sauter mean, and surface area flux of bubble, respectively. Results show that the proposed ANFIS model can accurately estimate outputs and be used in order to predict the parameters without having to conduct the new experiments in a laboratory. 展开更多
关键词 bubble diameter bubble surface area flux flotation Regression ANFIS
下载PDF
Numerical simulation on inclusion transport in continuous casting mold 被引量:10
2
作者 Lifeng Zhang Brian G Thomas 《Journal of University of Science and Technology Beijing》 CSCD 2006年第4期293-300,共8页
Turbulent flow, the transpor't of inclusions and bubbles, and inclusion removal by fluid flow, transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models... Turbulent flow, the transpor't of inclusions and bubbles, and inclusion removal by fluid flow, transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models, and validated through comparison with plant measurements of inclusions. Steady 3-D flow of steel in the liquid pool in the mold and upper strand is simulated with a finitedifference computational model using the standard k-εturbulence rondel. Trajectories of inclusions and bubhles tire calculated by integrating each local velocity, considering its drag and buoyancy forces, A "random walk" model is used to incorporate the effect of turbulent fluctuations on the particle motion. The attachment probability of inclusions on a bubble surface is investigated based on fundamental fluid flow simulations, incorporating the turbulent inclusion trajectory and sliding time of each individual inclusion along the bubble surface as a function of particle and bubble size. The chunge in inclusion distribution due to removal by bubble transport in the mold is calculated based on the computed attachment probability of inclusions on each bubble and the computed path length of the bubbles. The results indicate that 6%-10% inclusions are removed by fluid flow transport. 10% by bubble flotation, and 4% by entrapment to the submerged entry nozzle (SEN) walls. Smaller bubbles and larger inclusions have larger attachment probabilities. Smaller bubbles are more efficient for inclusion removal by bubble flotation, so Inng as they are not entrapped in the solidifying shell A larger gas flow rate favors inclusion removal by bubble flotation. The optimum bubble size should be 2-4mm. 展开更多
关键词 inclusion removal fluid flow transport bubble flotation continuous casting mold attachment probability
下载PDF
Feasibility of bubble surface modification for natural organic matter removal from river water using dissolved air flotation 被引量:1
3
作者 Yulong Shi Jiaxuan Yang +1 位作者 Jun Ma Congwei Luo 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第6期89-98,共10页
A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and th... A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and their effects on natural organic matter (NOM) removal from river water were investigated. NOM in the samples was fractionated based on molecular weight and hydrophobicity. The disinfection byproduct formation potentials of each fraction and their removal efficiencies were also evaluated. The results showed that chitosan was the most promising bubble modifier compared with a surfactant and a synthetic polymer. Tiny bubbles in the OAF pump system facilitated the adsorption of chitosan onto microbubble surfaces. The hydrophobic NOM fraction was preferentially removed by chitosan-modified bubbles. Decreasing the recycle water pH from 7.0 to 5.5 improved the removal of hydrophilic NOM with low molecular weight. Likewise, hydrophilic organic compounds gave high dihaloacetic acid yields in raw water. An enhanced reduction of haloacetic acid precursors was obtained with recycle water at pH values of 5.5 and 4.0. The experimental results indicate that NOM fractions may interact with bubbles through different mechanisms. Positive bubble modification provides an alternative approach for OAF to enhance NOM removal. 展开更多
关键词 bubble surface modification Chitosan Disinfection by-product Dissolved air flotation Organic fraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部