An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the conv...An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.展开更多
The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS)...The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.展开更多
The soft switching operation principle and operation performance of rugged resonant pole (RRP) is given. The applications of RRP in soft switching DC DC converter and soft switching inverter are discussed in detail. R...The soft switching operation principle and operation performance of rugged resonant pole (RRP) is given. The applications of RRP in soft switching DC DC converter and soft switching inverter are discussed in detail. RRP can constitute buck boost soft switching DC DC converter and isolated soft switching DC DC converter with the automatic limitation performance of output power. Partial series resonant DC DC converter with RRP can realize the zero voltage/zero current switching of power devices. RR...展开更多
Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the...Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.展开更多
A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (z...A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.展开更多
The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their d...The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D 〉 0.5 and that of the VCM controlled switching dc-dc converter to D 〈 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.展开更多
An improved perturbation technique proposed in a recent paper (Int. J. Electronics, vol. 63, pp.403-414) has been successfully applied to steady-state analysis of PWM switching converters. This paper extends the algor...An improved perturbation technique proposed in a recent paper (Int. J. Electronics, vol. 63, pp.403-414) has been successfully applied to steady-state analysis of PWM switching converters. This paper extends the algorithm to transient analysis of a broader class of non-linear systems. As an example, the transient response of a Boost PWM switching converter is analyzed to demonstrate its simplicity and accuracy.展开更多
The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Stead...The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Steady state and small signal analysis was carried out on the converter dynamic equations using the method of Harmonic balance Technique. The steady state variables and their respective ripple quantities obtained were plotted against duty ratio D. The results obtained for a supply input voltage of 60 volts to the converter at a duty ratio of D = 0.8 , compares well with simulation results.展开更多
An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means...An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.展开更多
The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirc...The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirchhoff laws.The state space matrices were used to construct the transfer functions of ON&OFF states.The step response of the converter was simulated using MATLAB.The step response curve was obtained using different values of circuit components(L,C1,C2 and RL)and optimized.The characteristic parameters such as rise time,overshoot,settling time,steady state error and stability were determined using the step response curve.The response curve shows that there is no overshoot;the rise time and settling time are very low as expected for a converter and its stability is very high but the amplitude is very.The circuit was tuned to attain the expected amplitude using PID controller with the help of Genetic algorithm.The excellent results of circuits’characteristic parameters are very useful guideline for constructing such CSC converters for DC-DC conversions.The circuit characteristic parameters are useful in constructing such CSC converters for DCDC conversions in driving solar energy using solar panel.展开更多
In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control se...In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.展开更多
Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis...Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis, PSIM simulation and circuit experiment. A special limitation of soft-switching techniques has been found in their AC/DC applications.展开更多
A soft switching three-transistor push-pull(TTPP)converter is proposed in this paper. The 3rd transistor is inserted in the primary side of a traditional push-pull converter. Two primitive transistors can achieve zero...A soft switching three-transistor push-pull(TTPP)converter is proposed in this paper. The 3rd transistor is inserted in the primary side of a traditional push-pull converter. Two primitive transistors can achieve zero-voltage-switching (ZVS) easily under a wide load range, the 3rd transistor can also realize zero-voltage-switching assisted by leakage inductance. The rated voltage of the 3rd transistor is half of that of the main transistors. The operation theory is explained in detail. The soft-switching realization conditions are derived. An 800 W with 83.3 kHz switching frequency prototype has been built. The experimental result is provided to verify the analysis.展开更多
An overview of recent advances in digital control of low-to medium-power DC/DC switching converters is presented.Traditionally,analog electronics methods have dominated in controlling such DC/DC converters.However,wit...An overview of recent advances in digital control of low-to medium-power DC/DC switching converters is presented.Traditionally,analog electronics methods have dominated in controlling such DC/DC converters.However,with the steadily decreasing cost of ICs,the feasibility of digitally controlled DC/DC switching converters has increased sig-nificantly.This paper outlines a sample of digital solutions for DC/DC switching converters to enhance the performance of DC/DC switching converters.Furthermore,latest research activities pertaining to applications for steady-state and dy-namic performance improvement,such as efficiency optimization,controller auto tuning,and capacitor charge balance control,is discussed.These applications demonstrate the significant advantages and potentials of digital control.展开更多
A novel 60 kW plasma converter with full range soft-switch by utilizing magnetizing inductance, leakage inductance and distributed inductance is introduced. The current injection phase-shifting technique is introduced...A novel 60 kW plasma converter with full range soft-switch by utilizing magnetizing inductance, leakage inductance and distributed inductance is introduced. The current injection phase-shifting technique is introduced into the research of soft-switching plasma converter successfully. The magnetic bias of transformer and the protection of switching parts are solved. The tests state that the power supply has excellent characteristics and higher efficiency and can meet the demand of large power plasma process well.展开更多
This paper overviews the benefits,challenges,research trends and potential solutions on the design and application of gallium nitride(GaN) technology in hard-switching power electronic converters from the device level...This paper overviews the benefits,challenges,research trends and potential solutions on the design and application of gallium nitride(GaN) technology in hard-switching power electronic converters from the device level up to converter level.展开更多
The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microele...The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.展开更多
Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a c...Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.展开更多
By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in dis...By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.展开更多
文摘An intelligent fuzzy logic inference pipeline for the control of a dc-dc buck-boost converter was designed and built using a semi-custom VLSI chip. The fuzzy linguistics describing the switching topologies of the converter was mapped into a look-up table that was synthesized into a set of Boolean equations. A VLSI chip–a field programmable gate array (FPGA) was used to implement the Boolean equations. Features include the size of RAM chip independent of number of rules in the knowledge base, on-chip fuzzification and defuzzification, faster response with speeds over giga fuzzy logic inferences per sec (FLIPS), and an inexpensive VLSI chip. The key application areas are: 1) on-chip integrated controllers;and 2) on-chip co-integration for entire system of sensors, circuits, controllers, and detectors for building complete instrument systems.
文摘The application areas of conventional push pull converters are limited because of high voltage stress of switches (twice of input voltage). This paper presents a novel zero voltage and zero current switching (ZCS) PWM push pull three level converter in which the voltage stress of switches is input voltage. With phase shifted modulation strategy, the leading switches can only realize zero voltage switching (ZVS), and the lagging switches can realize ZCS when block capacitor and block diodes are added. Using the strategy, the converter overcomes the drawbacks presented by the conventional push pull converter, such as magnetic aberration, large switch loss, and voltage spike on switches, so it can get higher efficiency, and a wider application area. The operating principle of the new converter is analyzed and verified on a 600 W, 50 kHz experimental prototype. Several zero voltage and zero current switching PWM push pull three level converters are proposed.
文摘The soft switching operation principle and operation performance of rugged resonant pole (RRP) is given. The applications of RRP in soft switching DC DC converter and soft switching inverter are discussed in detail. RRP can constitute buck boost soft switching DC DC converter and isolated soft switching DC DC converter with the automatic limitation performance of output power. Partial series resonant DC DC converter with RRP can realize the zero voltage/zero current switching of power devices. RR...
基金This work is supported by the Macao Science and Technology Development Fund(FDCT)under Grant 0041/2022/A1by the Research Committee of University of Macao under Grant MYRG2022-00004-IME.
文摘Switched-capacitor(SC)DC-DC converter[1]is an impor-tant alternative to inductive DC-DC converter,in terms of removing the bulky power inductor.Hence,it is widely used in low-profile,low-power applications,such as the internet of things(IoT)sensor nodes and energy harvesting[2].Mean-while,considering that capacitor has a much higher energy density than inductor,high-power applications.
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
文摘A new PWM converter based on soft switching is introduced. The converter uses a minimum number of devices, and requires less switching operations than conventional techniques. Switching is realized solely in a ZVS (zero voltage switching) mode, therefore the loss is reduced and EMI (electromagnetic interference) is suppressed. The paper analyzes the operation of ZVS, and discusses the methods for maintaining a unit power factor and constant DC voltage. Changing the modulation index M and the phase angle θ keeps the input current in phase with the voltage. It also keeps the current sinusoidal, and ensures a constant output voltage.
基金Project supported by the National Natural Science Foundation of China (Grant No.50677056)the Natural Science Foundation of Jiangsu Province,China (Grant No.BK2009105)+1 种基金the Cultivation Project of Excellent Doctorate Dissertation of Southwest Jiaotong University,Chinathe Doctoral Innovation Foundation of Southwest Jiaotong University,China
文摘The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D 〉 0.5 and that of the VCM controlled switching dc-dc converter to D 〈 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.
基金Natural Science Foundation of Guang Dong ProvinceDoctoral Fund of the State Education Commission of China
文摘An improved perturbation technique proposed in a recent paper (Int. J. Electronics, vol. 63, pp.403-414) has been successfully applied to steady-state analysis of PWM switching converters. This paper extends the algorithm to transient analysis of a broader class of non-linear systems. As an example, the transient response of a Boost PWM switching converter is analyzed to demonstrate its simplicity and accuracy.
文摘The paper presents modeling approach of a Single Ended Primary Inductance Converter (SEPIC) system. The complete model derivation of the SEPIC converter system has been presented in different modes of operation. Steady state and small signal analysis was carried out on the converter dynamic equations using the method of Harmonic balance Technique. The steady state variables and their respective ripple quantities obtained were plotted against duty ratio D. The results obtained for a supply input voltage of 60 volts to the converter at a duty ratio of D = 0.8 , compares well with simulation results.
文摘An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.
文摘The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirchhoff laws.The state space matrices were used to construct the transfer functions of ON&OFF states.The step response of the converter was simulated using MATLAB.The step response curve was obtained using different values of circuit components(L,C1,C2 and RL)and optimized.The characteristic parameters such as rise time,overshoot,settling time,steady state error and stability were determined using the step response curve.The response curve shows that there is no overshoot;the rise time and settling time are very low as expected for a converter and its stability is very high but the amplitude is very.The circuit was tuned to attain the expected amplitude using PID controller with the help of Genetic algorithm.The excellent results of circuits’characteristic parameters are very useful guideline for constructing such CSC converters for DC-DC conversions.The circuit characteristic parameters are useful in constructing such CSC converters for DCDC conversions in driving solar energy using solar panel.
文摘In medium voltage-high power(MV-HP)applications,the high switching frequency of power converter will result in unnecessary energy losses,which directly affect efficiency.To resolve this issue,a novel finite control set-model predictive control(FCS-MPC)with low switching frequency for three-level neutral point clamped-active front-end converters(NPC-AFEs)is proposed.With this approach,the prediction model of three-level NPC-AFEs is established inα-βreference frame,and the control objective of low average switching frequency is introduced into a cost function.The proposed method not only achieves the desired control performance under low switching frequency,but also performs the efficient operation for the three-level NPC-AFEs.The simulation results are provided to verify the effectiveness of proposed control scheme.
基金Sponsored by the Scientific Research Foundaltion fbr the Returned Overseas Chinese Scholars,Ministry of Education
文摘Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis, PSIM simulation and circuit experiment. A special limitation of soft-switching techniques has been found in their AC/DC applications.
文摘A soft switching three-transistor push-pull(TTPP)converter is proposed in this paper. The 3rd transistor is inserted in the primary side of a traditional push-pull converter. Two primitive transistors can achieve zero-voltage-switching (ZVS) easily under a wide load range, the 3rd transistor can also realize zero-voltage-switching assisted by leakage inductance. The rated voltage of the 3rd transistor is half of that of the main transistors. The operation theory is explained in detail. The soft-switching realization conditions are derived. An 800 W with 83.3 kHz switching frequency prototype has been built. The experimental result is provided to verify the analysis.
文摘An overview of recent advances in digital control of low-to medium-power DC/DC switching converters is presented.Traditionally,analog electronics methods have dominated in controlling such DC/DC converters.However,with the steadily decreasing cost of ICs,the feasibility of digitally controlled DC/DC switching converters has increased sig-nificantly.This paper outlines a sample of digital solutions for DC/DC switching converters to enhance the performance of DC/DC switching converters.Furthermore,latest research activities pertaining to applications for steady-state and dy-namic performance improvement,such as efficiency optimization,controller auto tuning,and capacitor charge balance control,is discussed.These applications demonstrate the significant advantages and potentials of digital control.
基金This project is supported by National Natural Science Foundation of China (No.59975030)Provincial Natural Science Foundation of Guangdong,China(No.04300691).
文摘A novel 60 kW plasma converter with full range soft-switch by utilizing magnetizing inductance, leakage inductance and distributed inductance is introduced. The current injection phase-shifting technique is introduced into the research of soft-switching plasma converter successfully. The magnetic bias of transformer and the protection of switching parts are solved. The tests state that the power supply has excellent characteristics and higher efficiency and can meet the demand of large power plasma process well.
基金supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877the Current Industry Partnership Program
文摘This paper overviews the benefits,challenges,research trends and potential solutions on the design and application of gallium nitride(GaN) technology in hard-switching power electronic converters from the device level up to converter level.
文摘The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.
文摘Phase shifted converter realizes zero voltage switching (ZVS) with the use of leakage inductance of the main transformer, however, the realization of ZVS for lagging bridge leg is difficult. This paper proposes a current enhanced principle, and based on the principle, a novel phase shifted converter is proposed, which adds an auxi liary resonant net to the conventional full bridge converter to help the lagging bridge leg to realize ZVS. The principle and the design of the novel converter are analyzed, and the simulational and experimental results verify the principle.
基金Project supported by the National Natural Science Foundations of China (Grant Nos 50677056 and 60472059)
文摘By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.