Static compression test on the Honeycomb sandwich structure with surface core defect carry out in this paper. The specimen divided into four groups, one had no defect, one had circle defect, the other two groups had r...Static compression test on the Honeycomb sandwich structure with surface core defect carry out in this paper. The specimen divided into four groups, one had no defect, one had circle defect, the other two groups had rectangular defect in different direction. In the process of loading the strain gauge which located on the specimen surface in each group record the strain transformation of the specimen surface. Through the Static load test on the fatigue testing machine, fracture load of each specimen was record. According to the data, how the size and shape of the defect influence the compression static strength of Honeycomb sandwich was discussed, and inspecting defects direction how to affect the structural static slrength by means of theoretical analysis and data fitting, meanwhile the shape of the defects in structure how to effect buckling was discussed too.展开更多
为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer...为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer, HSBDCSST),使其兼具Buck/Boost-CLLLC变换器的双向灵活调压和CLLLC变换器的双向高效传输优势。同时提出了CLLLC模块的同步方波控制和Buck/Boost-CLLLC模块的改进虚拟直流电机(improvement virtual direct current motor, IVDCM)控制。其中各CLLLC模块采用同一个固定频率占空比为50%的方波进行控制以保证高效率。而对于Buck/Boost-CLLLC模块,在传统虚拟直流电机(virtual direct current motor,VDCM)控制的基础上引入直流电机额定角速度随机械功率按比例变化的环节,构成IVDCM控制策略,实现调压并改善直流变压器的惯性阻尼特性,有效提高了系统的响应速度与动态特性。最后搭建3模块串并联系统的Matlab/Simulink仿真模型及实验平台,验证了该控制方法的有效性。展开更多
文摘Static compression test on the Honeycomb sandwich structure with surface core defect carry out in this paper. The specimen divided into four groups, one had no defect, one had circle defect, the other two groups had rectangular defect in different direction. In the process of loading the strain gauge which located on the specimen surface in each group record the strain transformation of the specimen surface. Through the Static load test on the fatigue testing machine, fracture load of each specimen was record. According to the data, how the size and shape of the defect influence the compression static strength of Honeycomb sandwich was discussed, and inspecting defects direction how to affect the structural static slrength by means of theoretical analysis and data fitting, meanwhile the shape of the defects in structure how to effect buckling was discussed too.
文摘为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer, HSBDCSST),使其兼具Buck/Boost-CLLLC变换器的双向灵活调压和CLLLC变换器的双向高效传输优势。同时提出了CLLLC模块的同步方波控制和Buck/Boost-CLLLC模块的改进虚拟直流电机(improvement virtual direct current motor, IVDCM)控制。其中各CLLLC模块采用同一个固定频率占空比为50%的方波进行控制以保证高效率。而对于Buck/Boost-CLLLC模块,在传统虚拟直流电机(virtual direct current motor,VDCM)控制的基础上引入直流电机额定角速度随机械功率按比例变化的环节,构成IVDCM控制策略,实现调压并改善直流变压器的惯性阻尼特性,有效提高了系统的响应速度与动态特性。最后搭建3模块串并联系统的Matlab/Simulink仿真模型及实验平台,验证了该控制方法的有效性。