The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling...The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling deformation of the inhomogeneous laminate.This paper presents a macroscopic model for buckling of an inhomogeneous SMPC laminate under initial biaxial prestrains.Both linear and nonlinear buckling analyses are carried out using the energy method.The influences of prestrain biaxiality,temperature,and ply angle on the buckling wavelength,critical buckling prestrain,and buckling amplitude are calculated.The results demonstrate that the critical buckling wavelength of the SMPC laminate is independent of the prestrain,while the amplitude is almost independent of temperature.In addition,the optimal fiber stacking configuration with the maximum critical buckling prestrains of inhomogeneous SMPC laminates is determined by a genetic algorithm.展开更多
Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle...Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals. We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.展开更多
Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh...Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh form and excellent rigidity. In order to further understand the buckling behaviors of single layer two-way grid cylindrical shell roof with tension members,the buckling experiments have been undertaken to investigate the effect of tension members,in either out-of-plane or in-plane placement. A single layer two-way grid cylindrical shell roof with out-of-plane tension members has been tested under symmetric and asymmetric loading. The tension member placement,the introducing initial axial force to tension members and the load patterns are considered to investigate the buckling behavior. Experimental results indicate that four long out-ofplane tension members work well under symmetrical loading,but only two long out-of-plane tension members work under asymmetrical loading. It can be concluded that the PC bar members used as tension members for this study are useful in the construction of a single layer two-way grid cylindrical shell roof with structural members intersecting at small angles.展开更多
Due to outstanding ductility and high strength,the steel plate shear wall(SPSW)is recognized as a good lateral system for building structures; particularly as it interacts with earthquake resistant design.This study a...Due to outstanding ductility and high strength,the steel plate shear wall(SPSW)is recognized as a good lateral system for building structures; particularly as it interacts with earthquake resistant design.This study aims to reveal the dynamic and cyclic behavior of steel plated shear wall.Finite element method of analysis was implemented in order to simulate the behavior of such a wall structure.To determine the dynamic behavior of un-stiffened plate shear wall,two different analytical models were implemented.The post buckling strength of steel plate subjected to lateral loading was also employed.The story shear-drift diagrams of steel shear wall system were presented.The strength and ductility of the system obtained from the analysis were compared with those of steel shear wall tests reported before.The pertinent parameters of the steel shear wall system such as plate thickness,column and beam stiffness and the plate aspect ratio were recognized and their effects were recorded.The effect of stiffeners on the behavior of the SPSW was also investigated.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12102107 and 12272113)China National Postdoctoral Program for Innovative Talents(No.BX2021090).
文摘The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling deformation of the inhomogeneous laminate.This paper presents a macroscopic model for buckling of an inhomogeneous SMPC laminate under initial biaxial prestrains.Both linear and nonlinear buckling analyses are carried out using the energy method.The influences of prestrain biaxiality,temperature,and ply angle on the buckling wavelength,critical buckling prestrain,and buckling amplitude are calculated.The results demonstrate that the critical buckling wavelength of the SMPC laminate is independent of the prestrain,while the amplitude is almost independent of temperature.In addition,the optimal fiber stacking configuration with the maximum critical buckling prestrains of inhomogeneous SMPC laminates is determined by a genetic algorithm.
基金supported by the National Natural Science Foundation of China(11025208,11372042,and 11221202)
文摘Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals. We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.
基金Sponsored by the Postdoctoral Science Foundation of China(Grant No.2015M571422)Heilongjiang Province Postdoctoral Science Foundation(Grant No.LBH-Z14095)"Young Talents"Project of Northeast Agricultural University(Grant No.14QC50)
文摘Single layer two-way grid shell with in-plane and out-of-plane tension members is a new type of single-layer latticed shell roofs. Compared with traditional single-layer latticed shells,this new type has a unique mesh form and excellent rigidity. In order to further understand the buckling behaviors of single layer two-way grid cylindrical shell roof with tension members,the buckling experiments have been undertaken to investigate the effect of tension members,in either out-of-plane or in-plane placement. A single layer two-way grid cylindrical shell roof with out-of-plane tension members has been tested under symmetric and asymmetric loading. The tension member placement,the introducing initial axial force to tension members and the load patterns are considered to investigate the buckling behavior. Experimental results indicate that four long out-ofplane tension members work well under symmetrical loading,but only two long out-of-plane tension members work under asymmetrical loading. It can be concluded that the PC bar members used as tension members for this study are useful in the construction of a single layer two-way grid cylindrical shell roof with structural members intersecting at small angles.
文摘Due to outstanding ductility and high strength,the steel plate shear wall(SPSW)is recognized as a good lateral system for building structures; particularly as it interacts with earthquake resistant design.This study aims to reveal the dynamic and cyclic behavior of steel plated shear wall.Finite element method of analysis was implemented in order to simulate the behavior of such a wall structure.To determine the dynamic behavior of un-stiffened plate shear wall,two different analytical models were implemented.The post buckling strength of steel plate subjected to lateral loading was also employed.The story shear-drift diagrams of steel shear wall system were presented.The strength and ductility of the system obtained from the analysis were compared with those of steel shear wall tests reported before.The pertinent parameters of the steel shear wall system such as plate thickness,column and beam stiffness and the plate aspect ratio were recognized and their effects were recorded.The effect of stiffeners on the behavior of the SPSW was also investigated.