This paper work aims to present the effect of the soil stiffness (k), boundary conditions of piles and embedded length of piles (L) on a buckling force of a fully embedded pile and subject to an axial compression ...This paper work aims to present the effect of the soil stiffness (k), boundary conditions of piles and embedded length of piles (L) on a buckling force of a fully embedded pile and subject to an axial compression force only, based on the finite difference method. Based on this method, MATLAB sottware is used to calculate the buckling forces of piles. Effect of the soil stiffness (k), boundary conditions of piles and embedded length of piles (L) on a buckling force have been studied for reinforced concrete pile, whereas the modulus of horizontal subgrade reaction is adopted constantly with depth, increasing linearly with depth with zero value at the surface and increasing linearly with depth with nonzero value at the surface.展开更多
文摘This paper work aims to present the effect of the soil stiffness (k), boundary conditions of piles and embedded length of piles (L) on a buckling force of a fully embedded pile and subject to an axial compression force only, based on the finite difference method. Based on this method, MATLAB sottware is used to calculate the buckling forces of piles. Effect of the soil stiffness (k), boundary conditions of piles and embedded length of piles (L) on a buckling force have been studied for reinforced concrete pile, whereas the modulus of horizontal subgrade reaction is adopted constantly with depth, increasing linearly with depth with zero value at the surface and increasing linearly with depth with nonzero value at the surface.