Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nu...Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nutritional profile of grains.In this study,we systematically evaluate the safety of Tartary buckwheat seeds(TB)and Tartary buckwheat sprouts(TBS)used as high active ingredients.After evaluating nutrition levels,bioactive compounds and ANFs in TBS during germinating,5^(th)-day TBS were selected as the raw material.C57BL/6J mice were gavaged daily with distilled water,TB,or TBS for 6 weeks.The physiological indices related to ANFs were determined.Results showed that the TB intake tends to generate negative effects on the gut microbiota,and organs.Additionally,upon TB intake,the Fe^(3+)content in serum,trypsin activity in pancreas and jejunum decreased,while the cytokine,IgE,and histamine levels in serum,water content in faeces,cytokine levels in liver and jejunum increased.Conversely,TBS did not induce any obvious negative effects on the above relevant indices and showed better lipid-lowering effect.Altogether,TBS are safer and more effective as a raw material to produce the functional food for long-term consumption with the intention of preventing and treating hyperlipidaemia.展开更多
To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design ...To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design methodsto investigate the seed coating formula and physical properties of Tartary buckwheat. The specific effects ofeach component on Tartary buckwheat seed germination are analyzed. The findings reveal that the seed coatingagent formulated with 1.5% polyvinyl alcohol, 0.15% sodium alginate, 0.2% op-10, 0.1% polyacrylamide, 8% colorant,3% ammonium sulfate, 1% potassium dihydrogen phosphate, and 0.15% carbendazim exhibits the mosteffective coating. It demonstrates optimal physical properties and promotes seed germination efficiently. The suspensionrate of this seed coating agent reaches 91.12%, with a mere 2.13% coating shedding rate and 2.5% coatingseed rot rate. Furthermore, it achieves a germination percentage of 99.17%, which is 20.84% higher than the lowestgroup. The germination potential and index are also significantly higher than the lowest group, with anincrease of 20.84% and 26.56%, respectively. Additionally, the vitality index is 553.08, a 15.75% increase comparedto the lowest group. The application of seed coating agents helps reduce seed resource loss, increase plant numbers,and ultimately enhance agricultural yields. This finding holds practical significance in agriculturalproduction.展开更多
Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on...Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis.展开更多
Diabetes is one of the most difficult chronic diseases to cure in the world,which seriously affects people’s health and quality of life.Flavonoids in buckwheat can regulate blood glucose levels by inhibitingα-amylas...Diabetes is one of the most difficult chronic diseases to cure in the world,which seriously affects people’s health and quality of life.Flavonoids in buckwheat can regulate blood glucose levels by inhibitingα-amylase activity.Therefore,sweet buckwheat produced in Inner Mongolia was used as the research object,and buckwheat fl avonoids were extracted by ultrasonic-assisted extraction method.Total fl avonoids content was determined by ultraviolet-visible spectrophotometry.With acarbose as the positive control,the inhibition test ofα-amylase was carried out by DNS colorimetry to study the inhibition behavior of fl avonoids onα-amylase activity.The results showed that the extraction process of flavonoids was stable and reliable,and the established method for the determination of flavonoids was simple,accurate and reproducible.The total flavonoids content of buckwheat samples was 2.706 mg/g,buckwheat total fl avonoids extraction solution had an inhibitory eff ect onα-amylase,and its median inhibition concentration(IC_(50))was 38.53 mg/mL.The results of this experiment provide a technical reference for the development and utilization of fl avonoids in Inner Mongolia sweet buckwheat,and provide a theoretical reference for the development and application of flavonoid-rich hypoglycemic food.展开更多
Nitrogen(N)fertilization affects grain quality in common buckwheat(Fagopyrum esculentum Moench).But the effects of N fertilizer on various buckwheat protein parameters are not fully understood.This study aimed to inve...Nitrogen(N)fertilization affects grain quality in common buckwheat(Fagopyrum esculentum Moench).But the effects of N fertilizer on various buckwheat protein parameters are not fully understood.This study aimed to investigate the synthesis,accumulation,and quality of buckwheat protein under four N application rates in the Loess Plateau,China.Optimal N application(180 kg N ha-1)improved yield,agronomic traits,and N transport and increased protein yield and protein component accumulation.Prolamin and glutelin accumulation first increased and then decreased with increasing N application.The relationships between the contents of protein components and the amount of applied N generally followed quadratic functions.Nitrate reductase and glutamine synthetase activities first increased and then decreased with increasing N levels.Optimal N fertilizer increased the waterholding capacity and thermal stability of buckwheat protein and reduced its emulsification capacity,but negligibly changed its oil-absorption capacity.Hydrophobic amino acids and glutelin content were the main factors affecting protein quality.展开更多
The gut is home to a large number of intestinal microbiota that play an important role in the metabolism and immune system of the host.A growing body of evidence suggests that a high-fat diet is closely associated wit...The gut is home to a large number of intestinal microbiota that play an important role in the metabolism and immune system of the host.A growing body of evidence suggests that a high-fat diet is closely associated with many metabolic disorders,including fatty liver and type 2 diabetes.According to reports,Tartary buckwheat extract has a positive effect on intestinal microbiota in animals.The effects of Tartary buckwheat on biochemical indexes and intestinal microflora in mice were studied.Tartary buckwheat protein(FGP),Tartary buckwheat resistant starch(FGS)and Tartary buckwheat flour(FGF)alleviated organ damage in mice and lowered the atherosclerotic index(AI)in plasma.Otherwise,principal coordinate analysis(PCoA)showed that intestinal bacterial structure of FGF were separated apparently from other groups.The Firmicutes/Bacteroidetes(F/B)value of the high-fat(HF)-FGF group was significantly lower than that of the HF-FGP and HF-FGS groups.FGF significantly increases the abundance of beneficial bacteria such as Bifidobacterium,while decreasing the abundance of lipopolysaccharide(LPS)-producing bacteria.Observation of blood lipid metabolism parameters and analysis of the intestinal microbiota suggested that FGF can be more effective than FGP and FGS to reduce the effects of a high-fat diet in mice,restoring the blood parameters to values similar of those in mice fed a low-fat diet.FGF may be used to prevent or treat blood lipid metabolism disorders and intestinal microbiota disorders in mice fed a high-fat diet.展开更多
Tartary buckwheat(Fagopyrum tataricum)is an important pseudocereal feed crop with medicinal and nutritional value.Drought is one of the main causes of reduced growth and yield in these plants.We investigated the growt...Tartary buckwheat(Fagopyrum tataricum)is an important pseudocereal feed crop with medicinal and nutritional value.Drought is one of the main causes of reduced growth and yield in these plants.We investigated the growth,physiological,and metabolic responses of the widely promoted Tartary buckwheat variety Chuan Qiao No.1 to polyethylene glycol(PEG)-mediated drought stress.Drought significantly decreased shoot length,shoot biomass and relative water content.Root length,malondialdehyde content,electrolyte leakage,activities of superoxide dismutase,peroxidase,catalase and amylase,and contents of soluble sugar,soluble protein and proline were increased by PEG-mediated drought.Untargeted metabolomics analysis identified 32 core metabolites in seedlings subjected to PEG-mediated drought,16 of which increased—including quercetin,isovitexin,cyanidin 3-O-beta-D-glucoside,L-arginine,and glycerophosphocholine,while the other 16 decreased—including 3-methoxytyramine,2,6-diaminopimelic acid,citric acid,UDP-alpha-D-glucose,adenosine,keto-D-fructose.The 32 core metabolites were enriched in 29 metabolic pathways,including lysine biosynthesis,citrate(TCA)cycle,anthocyanin biosynthesis,and aminoacyl-tRNA biosynthesis.Among them,taurine and hypotaurine metabolism,flavor and flavor biosynthesis,indole alkaline biosynthesis,and alanine,aspartate and glutamate metabolism were the four main metabolic pathways affected by drought.Our findings provide new insights into the physiological and metabolic response mechanisms of Tartary buckwheat to drought stress.展开更多
基金Supported by the Opening Project of Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsSichuan Engineering and Technology Research Center of Coarse Cereal Industralization,Chengdu University(2022CC013)。
文摘Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nutritional profile of grains.In this study,we systematically evaluate the safety of Tartary buckwheat seeds(TB)and Tartary buckwheat sprouts(TBS)used as high active ingredients.After evaluating nutrition levels,bioactive compounds and ANFs in TBS during germinating,5^(th)-day TBS were selected as the raw material.C57BL/6J mice were gavaged daily with distilled water,TB,or TBS for 6 weeks.The physiological indices related to ANFs were determined.Results showed that the TB intake tends to generate negative effects on the gut microbiota,and organs.Additionally,upon TB intake,the Fe^(3+)content in serum,trypsin activity in pancreas and jejunum decreased,while the cytokine,IgE,and histamine levels in serum,water content in faeces,cytokine levels in liver and jejunum increased.Conversely,TBS did not induce any obvious negative effects on the above relevant indices and showed better lipid-lowering effect.Altogether,TBS are safer and more effective as a raw material to produce the functional food for long-term consumption with the intention of preventing and treating hyperlipidaemia.
基金the Sichuan Science and Technology Program(2023NSFSC0214)China Agriculture Research System(CARS-07-B-1)+1 种基金National Natural Sciences Foundation of China(Nos.3230185031771716).
文摘To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design methodsto investigate the seed coating formula and physical properties of Tartary buckwheat. The specific effects ofeach component on Tartary buckwheat seed germination are analyzed. The findings reveal that the seed coatingagent formulated with 1.5% polyvinyl alcohol, 0.15% sodium alginate, 0.2% op-10, 0.1% polyacrylamide, 8% colorant,3% ammonium sulfate, 1% potassium dihydrogen phosphate, and 0.15% carbendazim exhibits the mosteffective coating. It demonstrates optimal physical properties and promotes seed germination efficiently. The suspensionrate of this seed coating agent reaches 91.12%, with a mere 2.13% coating shedding rate and 2.5% coatingseed rot rate. Furthermore, it achieves a germination percentage of 99.17%, which is 20.84% higher than the lowestgroup. The germination potential and index are also significantly higher than the lowest group, with anincrease of 20.84% and 26.56%, respectively. Additionally, the vitality index is 553.08, a 15.75% increase comparedto the lowest group. The application of seed coating agents helps reduce seed resource loss, increase plant numbers,and ultimately enhance agricultural yields. This finding holds practical significance in agriculturalproduction.
基金Science&Technology Department of Sichuan Province(2022YFQ0041,2022NSFSC1725,2023NSFSC0214)China Agriculture Research System(CARS-07-B-1)+2 种基金The National Natural Science Foundation of China(32160428)Innovative Training Program for College Students(202311079040,S202311079112,CDUCX2023550)Undergraduate Education and Teaching Reform Project of Chengdu University(cdjgb2022186).
文摘Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis.
文摘Diabetes is one of the most difficult chronic diseases to cure in the world,which seriously affects people’s health and quality of life.Flavonoids in buckwheat can regulate blood glucose levels by inhibitingα-amylase activity.Therefore,sweet buckwheat produced in Inner Mongolia was used as the research object,and buckwheat fl avonoids were extracted by ultrasonic-assisted extraction method.Total fl avonoids content was determined by ultraviolet-visible spectrophotometry.With acarbose as the positive control,the inhibition test ofα-amylase was carried out by DNS colorimetry to study the inhibition behavior of fl avonoids onα-amylase activity.The results showed that the extraction process of flavonoids was stable and reliable,and the established method for the determination of flavonoids was simple,accurate and reproducible.The total flavonoids content of buckwheat samples was 2.706 mg/g,buckwheat total fl avonoids extraction solution had an inhibitory eff ect onα-amylase,and its median inhibition concentration(IC_(50))was 38.53 mg/mL.The results of this experiment provide a technical reference for the development and utilization of fl avonoids in Inner Mongolia sweet buckwheat,and provide a theoretical reference for the development and application of flavonoid-rich hypoglycemic food.
基金supported by the National Key Research and Development Program of China(2020YFD1000805-03)National Natural Science Foundation of China(31671631)。
文摘Nitrogen(N)fertilization affects grain quality in common buckwheat(Fagopyrum esculentum Moench).But the effects of N fertilizer on various buckwheat protein parameters are not fully understood.This study aimed to investigate the synthesis,accumulation,and quality of buckwheat protein under four N application rates in the Loess Plateau,China.Optimal N application(180 kg N ha-1)improved yield,agronomic traits,and N transport and increased protein yield and protein component accumulation.Prolamin and glutelin accumulation first increased and then decreased with increasing N application.The relationships between the contents of protein components and the amount of applied N generally followed quadratic functions.Nitrate reductase and glutamine synthetase activities first increased and then decreased with increasing N levels.Optimal N fertilizer increased the waterholding capacity and thermal stability of buckwheat protein and reduced its emulsification capacity,but negligibly changed its oil-absorption capacity.Hydrophobic amino acids and glutelin content were the main factors affecting protein quality.
基金Shanghai Natural Science Foundation(20ZR1455800)the National Science Foundation of China(31871805)Shanghai Municipal Education Commission(Plateau Discipline Construction Program)and China Agriculture Research System(CARS-08-D2)。
文摘The gut is home to a large number of intestinal microbiota that play an important role in the metabolism and immune system of the host.A growing body of evidence suggests that a high-fat diet is closely associated with many metabolic disorders,including fatty liver and type 2 diabetes.According to reports,Tartary buckwheat extract has a positive effect on intestinal microbiota in animals.The effects of Tartary buckwheat on biochemical indexes and intestinal microflora in mice were studied.Tartary buckwheat protein(FGP),Tartary buckwheat resistant starch(FGS)and Tartary buckwheat flour(FGF)alleviated organ damage in mice and lowered the atherosclerotic index(AI)in plasma.Otherwise,principal coordinate analysis(PCoA)showed that intestinal bacterial structure of FGF were separated apparently from other groups.The Firmicutes/Bacteroidetes(F/B)value of the high-fat(HF)-FGF group was significantly lower than that of the HF-FGP and HF-FGS groups.FGF significantly increases the abundance of beneficial bacteria such as Bifidobacterium,while decreasing the abundance of lipopolysaccharide(LPS)-producing bacteria.Observation of blood lipid metabolism parameters and analysis of the intestinal microbiota suggested that FGF can be more effective than FGP and FGS to reduce the effects of a high-fat diet in mice,restoring the blood parameters to values similar of those in mice fed a low-fat diet.FGF may be used to prevent or treat blood lipid metabolism disorders and intestinal microbiota disorders in mice fed a high-fat diet.
基金We acknowledge the Project of National Key Research and Development Program of China(2020YFD1001403)China Agriculture Research System(CARS-07-B-1)+3 种基金Science&Technology Department of Sichuan Province(2022YFQ0041)the National Natural Science Foundation of China(31601260,32160428)Innovative Training Program for College Students(S202111079058)Special Research Fund from Key Laboratory of Coarse Cereal Processing,Ministry of Agriculture and Rural Affairs(2020CC012)to facilitate the research.
文摘Tartary buckwheat(Fagopyrum tataricum)is an important pseudocereal feed crop with medicinal and nutritional value.Drought is one of the main causes of reduced growth and yield in these plants.We investigated the growth,physiological,and metabolic responses of the widely promoted Tartary buckwheat variety Chuan Qiao No.1 to polyethylene glycol(PEG)-mediated drought stress.Drought significantly decreased shoot length,shoot biomass and relative water content.Root length,malondialdehyde content,electrolyte leakage,activities of superoxide dismutase,peroxidase,catalase and amylase,and contents of soluble sugar,soluble protein and proline were increased by PEG-mediated drought.Untargeted metabolomics analysis identified 32 core metabolites in seedlings subjected to PEG-mediated drought,16 of which increased—including quercetin,isovitexin,cyanidin 3-O-beta-D-glucoside,L-arginine,and glycerophosphocholine,while the other 16 decreased—including 3-methoxytyramine,2,6-diaminopimelic acid,citric acid,UDP-alpha-D-glucose,adenosine,keto-D-fructose.The 32 core metabolites were enriched in 29 metabolic pathways,including lysine biosynthesis,citrate(TCA)cycle,anthocyanin biosynthesis,and aminoacyl-tRNA biosynthesis.Among them,taurine and hypotaurine metabolism,flavor and flavor biosynthesis,indole alkaline biosynthesis,and alanine,aspartate and glutamate metabolism were the four main metabolic pathways affected by drought.Our findings provide new insights into the physiological and metabolic response mechanisms of Tartary buckwheat to drought stress.