期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Isolation and Characterization of Copia-like Retrotransposons from 12 Sweet Orange (Citrus sinensis Osbeck) Cultivars 被引量:9
1
作者 Neng-Guo TAO Juan XU Yun-Jiang CHENG Liu HONG Wen-Wu GUO Hua-Lin YI Xiu-Xin DENG 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第12期1507-1515,共9页
As the largest transposable element in the plant genome, retrotransposons are thought to be involved in citrus genetic instability and genome evolution, especially in sweet orange, which is prone to bud mutation. In t... As the largest transposable element in the plant genome, retrotransposons are thought to be involved in citrus genetic instability and genome evolution, especially in sweet orange, which is prone to bud mutation. In the present study, the presence of copia-like retrotransposons, their heterogeneity, genomic distribution, and transcriptional activities in Citrus were investigated in 12 sweet orange (Citrus sinensis Osbeck) cultivars using a PCR assay designed to detect copia-like reverse transcriptase (RT) sequences. Twelve amplification products from each cultivar were cloned and sequenced. The cloned sequences showed great heterogeneity, except “Dream” navel and “Hamlin”, both of which shared the same sequence. Frame shifting, termination, deletion, and substitution accounted for the heterogeneity of RT sequences. Southern blot hybridization using the RT1 clone from the “Cara Cara” navel as a probe showed that multiple copies were integrated throughout the sweet orange genomes, which made the retrotransposon possible an effective molecular marker to detect citrus evolution events and to reveal its relationship with bud mutation. No transcriptional activities of the retrotransposon were detected by RT-PCR and Northern analysis in the fruits and leaves of either “Cara Cara” or “Seike” navels. 展开更多
关键词 bud mutation CITRUS cloning PCR retrotransposons.
原文传递
Synergistic effects of plant hormones on spontaneous late-ripening mutant of'Jinghong'peach detected by transcriptome analysis 被引量:1
2
作者 Man Zhang Tingting Du +9 位作者 Yarui Yin Hongyan Cao Zhihua Song Mao Ye Yating Liu Yanhong Shen Libin Zhang Qing Yang Dong Meng Junkai Wu 《Food Quality and Safety》 SCIE CSCD 2022年第1期68-80,共13页
Objectives:Peach(Prunus persica L.)is an ancient fruit tree that originated from China.It is the climacteric fruit belonging to genus Prunus in family Rosaceae.Ethylene,which is produced during ripening,accelerates fr... Objectives:Peach(Prunus persica L.)is an ancient fruit tree that originated from China.It is the climacteric fruit belonging to genus Prunus in family Rosaceae.Ethylene,which is produced during ripening,accelerates fruit softening,and therefore peaches cannot be stored for a long time.Materials and Methods:To study the mechanism of fruit late ripening,transcriptome analysis of the fruit of a late-ripening mutant of'Jinghong'peach was performed to identify genes and pathways involved in fruit late ripening.Results:A total of 1805,1511,and 2309 genes were found to be differentially expressed in W2_vs_M1,W3_vs_M2,and W3_vs_M3,respectively.Functional enrichment analysis of the differentially expressed genes showed they were related to carotenoid biosynthesis,starch and sucrose metabolism plant hormone signal transduction,flavonoid biosynthesis,and photosynthesis.The expression trends of ripening-related genes that encode transcription factors and plant hormone signal transduction-related genes that encode enzymes were similar.Conclusions:It will help to elucidate the transcriptional regulatory network of fruit development in the spontaneous late-ripening mutant of‘Jinghong’peach and provide a theoretical basis for understanding the molecular regulatory mechanism of fruit ripening. 展开更多
关键词 PEACH LATE-RIPENING bud mutation transcriptome analysis plant hormones
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部