As the largest transposable element in the plant genome, retrotransposons are thought to be involved in citrus genetic instability and genome evolution, especially in sweet orange, which is prone to bud mutation. In t...As the largest transposable element in the plant genome, retrotransposons are thought to be involved in citrus genetic instability and genome evolution, especially in sweet orange, which is prone to bud mutation. In the present study, the presence of copia-like retrotransposons, their heterogeneity, genomic distribution, and transcriptional activities in Citrus were investigated in 12 sweet orange (Citrus sinensis Osbeck) cultivars using a PCR assay designed to detect copia-like reverse transcriptase (RT) sequences. Twelve amplification products from each cultivar were cloned and sequenced. The cloned sequences showed great heterogeneity, except “Dream” navel and “Hamlin”, both of which shared the same sequence. Frame shifting, termination, deletion, and substitution accounted for the heterogeneity of RT sequences. Southern blot hybridization using the RT1 clone from the “Cara Cara” navel as a probe showed that multiple copies were integrated throughout the sweet orange genomes, which made the retrotransposon possible an effective molecular marker to detect citrus evolution events and to reveal its relationship with bud mutation. No transcriptional activities of the retrotransposon were detected by RT-PCR and Northern analysis in the fruits and leaves of either “Cara Cara” or “Seike” navels.展开更多
Objectives:Peach(Prunus persica L.)is an ancient fruit tree that originated from China.It is the climacteric fruit belonging to genus Prunus in family Rosaceae.Ethylene,which is produced during ripening,accelerates fr...Objectives:Peach(Prunus persica L.)is an ancient fruit tree that originated from China.It is the climacteric fruit belonging to genus Prunus in family Rosaceae.Ethylene,which is produced during ripening,accelerates fruit softening,and therefore peaches cannot be stored for a long time.Materials and Methods:To study the mechanism of fruit late ripening,transcriptome analysis of the fruit of a late-ripening mutant of'Jinghong'peach was performed to identify genes and pathways involved in fruit late ripening.Results:A total of 1805,1511,and 2309 genes were found to be differentially expressed in W2_vs_M1,W3_vs_M2,and W3_vs_M3,respectively.Functional enrichment analysis of the differentially expressed genes showed they were related to carotenoid biosynthesis,starch and sucrose metabolism plant hormone signal transduction,flavonoid biosynthesis,and photosynthesis.The expression trends of ripening-related genes that encode transcription factors and plant hormone signal transduction-related genes that encode enzymes were similar.Conclusions:It will help to elucidate the transcriptional regulatory network of fruit development in the spontaneous late-ripening mutant of‘Jinghong’peach and provide a theoretical basis for understanding the molecular regulatory mechanism of fruit ripening.展开更多
基金the National Natural Science Foundation of China,国家科技攻关项目
文摘As the largest transposable element in the plant genome, retrotransposons are thought to be involved in citrus genetic instability and genome evolution, especially in sweet orange, which is prone to bud mutation. In the present study, the presence of copia-like retrotransposons, their heterogeneity, genomic distribution, and transcriptional activities in Citrus were investigated in 12 sweet orange (Citrus sinensis Osbeck) cultivars using a PCR assay designed to detect copia-like reverse transcriptase (RT) sequences. Twelve amplification products from each cultivar were cloned and sequenced. The cloned sequences showed great heterogeneity, except “Dream” navel and “Hamlin”, both of which shared the same sequence. Frame shifting, termination, deletion, and substitution accounted for the heterogeneity of RT sequences. Southern blot hybridization using the RT1 clone from the “Cara Cara” navel as a probe showed that multiple copies were integrated throughout the sweet orange genomes, which made the retrotransposon possible an effective molecular marker to detect citrus evolution events and to reveal its relationship with bud mutation. No transcriptional activities of the retrotransposon were detected by RT-PCR and Northern analysis in the fruits and leaves of either “Cara Cara” or “Seike” navels.
基金funded by the Hebei Provincial High-level Talents (A201901058)the Education Department of Hebei Province (QN2018138),China。
文摘Objectives:Peach(Prunus persica L.)is an ancient fruit tree that originated from China.It is the climacteric fruit belonging to genus Prunus in family Rosaceae.Ethylene,which is produced during ripening,accelerates fruit softening,and therefore peaches cannot be stored for a long time.Materials and Methods:To study the mechanism of fruit late ripening,transcriptome analysis of the fruit of a late-ripening mutant of'Jinghong'peach was performed to identify genes and pathways involved in fruit late ripening.Results:A total of 1805,1511,and 2309 genes were found to be differentially expressed in W2_vs_M1,W3_vs_M2,and W3_vs_M3,respectively.Functional enrichment analysis of the differentially expressed genes showed they were related to carotenoid biosynthesis,starch and sucrose metabolism plant hormone signal transduction,flavonoid biosynthesis,and photosynthesis.The expression trends of ripening-related genes that encode transcription factors and plant hormone signal transduction-related genes that encode enzymes were similar.Conclusions:It will help to elucidate the transcriptional regulatory network of fruit development in the spontaneous late-ripening mutant of‘Jinghong’peach and provide a theoretical basis for understanding the molecular regulatory mechanism of fruit ripening.