One of the aerodynamic phenomena associated with high performance aircraft is the high frequency vortex induced buffeting. The buffeting load can lead to high cyclic strain and stress,dramatically reduce the fatigue ...One of the aerodynamic phenomena associated with high performance aircraft is the high frequency vortex induced buffeting. The buffeting load can lead to high cyclic strain and stress,dramatically reduce the fatigue life of composite structures. In this paper, piezoelectric patches are bonded on the surface of composite panel. The dynamic response of the structure is measured by using bonded piezoelectric sensors. Filtered adaptive control algorithm is used to control the strain of piezoelectric actuators actively, so as to increase the modal damping coefficient of the composite panel, suppress the dynamic response and improve the fatigue performance of the structure. The feasibility of this method is verified in model experiments.展开更多
The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measur...The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.展开更多
The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantl...The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.展开更多
Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This ...Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff con- crete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a windspeed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow.展开更多
Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions.In this paper,a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span ins...Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions.In this paper,a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span insulator-line systems are derived based on the theory of cable structure.The closed-form solutions are presented and applied to predict nonlinear response including displacements and other reactions of the system subjected to a moving downburst wind in a case study.Accuracy and efficiency of the derived analytical frame are validated via comparisons with results from finite element method.展开更多
The strip assumption is the basis of current buffeting analysis. However, the strip assumption has limitation in describing the buffeting load on a line-like structure. The validity of strip assumption was presented a...The strip assumption is the basis of current buffeting analysis. However, the strip assumption has limitation in describing the buffeting load on a line-like structure. The validity of strip assumption was presented and an empirical 3-D aerodynamic admittance was proposed to describe the lift on streamlined decks. The relations between the 3-D admittance and Sears function are depicted.展开更多
Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges.The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of ...Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges.The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of a super long-span suspension bridge was investigated in this paper.Firstly,four non-stationary wind velocity models are established by combing the time-varying average wind velocity with an exponential function and the fluctuating wind velocity with four modulation functions,respectively.These non-stationary wind velocity models have obvious non-stationary characteristics and then are validated by the classical power spectrum densities.Finally,three displacement responses of the bridge deck under four different independent variables ofβin the exponential function and four modulation functions were compared,respectively.Results show that the turbulence intensities using two non-uniform modulation functions(NMF)are larger than those using uniform modulation functions(uMF).Moreover,the root mean square(RMS)values of three displacement responses increase with the decrease ofβ.Besides,the RMS values of three displacement under two NMFs are larger than those under two uMFs,and their RMS values under the second uMF are the smallest.展开更多
Transonic single-degree-of-freedom(SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are inve...Transonic single-degree-of-freedom(SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are investigated using Unsteady Reynolds-Averaged Navier-Stokes(URANS) equations. The airfoil is free to vibrate in SDOF of pitching. It is found that, the coupling system may be unstable and SDOF self-excited pitching oscillations occur in pre-buffet flow condition, where the free-stream angle of attack(AOA) is lower than the buffet onset of a stationary airfoil. In the theory of classical aeroelasticity, this unstable phenomenon is defined as flutter. However, this transonic SDOF flutter is closely related to transonic buffet(unstable aerodynamic models) due to the following reasons. Firstly, the SDOF flutter occurs only when the free-stream AOA of the spring suspended airfoil is slightly lower than that of buffet onset, and the ratio of the structural characteristic frequency to the buffet frequency is within a limited range. Secondly, the response characteristics show a high correlation between the SDOF flutter and buffet. A similar "lock-in" phenomenon exists, when the coupling frequency follows the structural characteristic frequency. Finally, there is no sudden change of the response characteristics in the vicinity of buffet onset, that is, the curve of response amplitude with the free-stream AOA is nearly smooth. Therefore, transonic SDOF flutter is often interwoven with transonic buffet and shows some complex characteristics of response, which is different from the traditional flutter.展开更多
文摘One of the aerodynamic phenomena associated with high performance aircraft is the high frequency vortex induced buffeting. The buffeting load can lead to high cyclic strain and stress,dramatically reduce the fatigue life of composite structures. In this paper, piezoelectric patches are bonded on the surface of composite panel. The dynamic response of the structure is measured by using bonded piezoelectric sensors. Filtered adaptive control algorithm is used to control the strain of piezoelectric actuators actively, so as to increase the modal damping coefficient of the composite panel, suppress the dynamic response and improve the fatigue performance of the structure. The feasibility of this method is verified in model experiments.
基金The Key Project of the National Natural Science Foundation of China Under Grant No.50538020 the National Science Fund for Distinguished Young Scholars Under Grant No.50725828+2 种基金 the National Natural Science Foundation of China Under Grant No.50978056the National Natural Science Foundation of China for Young Scholars Under Grant No.50908046 the Ph.D.Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.
基金Projects(51908125,51978155) supported by the National Natural Science Foundation of ChinaProject(W03070080)supported by the National Ten Thousand Talent Program for Young Top-notch Talents,China+1 种基金Project(BK20190359)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(BE2018120) supported by the Key Research and Development Plan of Jiangsu Province,China。
文摘The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.
基金supported by the German Research Foundation (DFG) via Research Training Group ‘‘Evaluation of Coupled Numerical and Experimental Partial Models in Structural Engineering (GRK 1462)"
文摘Wind-induced vibrations commonly represent the leading criterion in the design of long-span bridges. The aerodynamic forces in bridge aerodynamics are mainly based on the quasi-steady and linear unsteady theory. This paper aims to investigate different formulations of self-excited and buffeting forces in the time domain by comparing the dynamic response of a multi-span cable-stayed bridge during the critical erection condition. The bridge is selected to represent a typical reference object with a bluff con- crete box girder for large river crossings. The models are viewed from a perspective of model complexity, comparing the influence of the aerodynamic properties implied in the aerodynamic models, such as aerodynamic damping and stiffness, fluid memory in the buffeting and self-excited forces, aerodynamic nonlinearity, and aerodynamic coupling on the bridge response. The selected models are studied for a windspeed range that is typical for the construction stage for two levels of turbulence intensity. Furthermore, a simplified method for the computation of buffeting forces including the aerodynamic admittance is presented, in which rational approximation is avoided. The critical flutter velocities are also compared for the selected models under laminar flow.
基金supported in part by Science and Technology Foundation of State Grid Shandong Electric Power Company(Grant No.52062518000U)National Natural Science Foundation of China(Grant Nos.51720105005 and 51478373)+1 种基金by Science and Technology Foundation of State Grid Shandong Electric Power Company(Grant No.52062518000U)National Natural Science Foundation of China(Grant Nos.51720105005 and 51478373)are greatly acknowledged.
文摘Downburst event is identified as a major cause to failure of transmission lines in non-coastal regions.In this paper,a novel nonlinear analytical frame for quasi-static buffeting responses of hinged and multi-span insulator-line systems are derived based on the theory of cable structure.The closed-form solutions are presented and applied to predict nonlinear response including displacements and other reactions of the system subjected to a moving downburst wind in a case study.Accuracy and efficiency of the derived analytical frame are validated via comparisons with results from finite element method.
文摘The strip assumption is the basis of current buffeting analysis. However, the strip assumption has limitation in describing the buffeting load on a line-like structure. The validity of strip assumption was presented and an empirical 3-D aerodynamic admittance was proposed to describe the lift on streamlined decks. The relations between the 3-D admittance and Sears function are depicted.
基金the National Natural Science Foundation of China(Nos.52278311,52178503,U2005216,and 51908374)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030148)+2 种基金the Shenzhen Science and Technology Innovation Program(Nos.JCYJ20220531101609020,KQTD20200820113004005,and GJHZ20220913143006012)the Foundation of State Key Laboratory for Disaster Reduction in Civil Engineering,Tongji University(No.SLDRCE19-B-10)the National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment.
文摘Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges.The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of a super long-span suspension bridge was investigated in this paper.Firstly,four non-stationary wind velocity models are established by combing the time-varying average wind velocity with an exponential function and the fluctuating wind velocity with four modulation functions,respectively.These non-stationary wind velocity models have obvious non-stationary characteristics and then are validated by the classical power spectrum densities.Finally,three displacement responses of the bridge deck under four different independent variables ofβin the exponential function and four modulation functions were compared,respectively.Results show that the turbulence intensities using two non-uniform modulation functions(NMF)are larger than those using uniform modulation functions(uMF).Moreover,the root mean square(RMS)values of three displacement responses increase with the decrease ofβ.Besides,the RMS values of three displacement under two NMFs are larger than those under two uMFs,and their RMS values under the second uMF are the smallest.
基金supported by the New Century Program for Excellent Talents of Ministry of Education of China(Grant No.NCET-13-0478)National Natural Science Foundation of China(Grant No.11172237)
文摘Transonic single-degree-of-freedom(SDOF) flutter and transonic buffet are the typical and complex aeroelastic phenomena in the transonic flow. In this study, transonic aeroelastic issues of an elastic airfoil are investigated using Unsteady Reynolds-Averaged Navier-Stokes(URANS) equations. The airfoil is free to vibrate in SDOF of pitching. It is found that, the coupling system may be unstable and SDOF self-excited pitching oscillations occur in pre-buffet flow condition, where the free-stream angle of attack(AOA) is lower than the buffet onset of a stationary airfoil. In the theory of classical aeroelasticity, this unstable phenomenon is defined as flutter. However, this transonic SDOF flutter is closely related to transonic buffet(unstable aerodynamic models) due to the following reasons. Firstly, the SDOF flutter occurs only when the free-stream AOA of the spring suspended airfoil is slightly lower than that of buffet onset, and the ratio of the structural characteristic frequency to the buffet frequency is within a limited range. Secondly, the response characteristics show a high correlation between the SDOF flutter and buffet. A similar "lock-in" phenomenon exists, when the coupling frequency follows the structural characteristic frequency. Finally, there is no sudden change of the response characteristics in the vicinity of buffet onset, that is, the curve of response amplitude with the free-stream AOA is nearly smooth. Therefore, transonic SDOF flutter is often interwoven with transonic buffet and shows some complex characteristics of response, which is different from the traditional flutter.