In order to investigate the possibility of using different materials as bolus in radiotherapy, five samples denoted by S2 - S6 were prepared and analyzed by comparison with one available commercial bolus denoted by S1...In order to investigate the possibility of using different materials as bolus in radiotherapy, five samples denoted by S2 - S6 were prepared and analyzed by comparison with one available commercial bolus denoted by S1. Sample S1 was a thermoplastic material from Qfix;S2 was a moldable silicon rubber (RTV-530 from Prochima);S3 and S4 were obtained by adding micrometric particles of Al and Cu respectively (at the same mass concentration of 5.5%);S5 was another moldable silicon rubber (GSP400 from Prochima) and S6 was a mixture of GSP400 and micrometric particles of Cu (at the mass concentration of 5.5%). The measurements of normalized transmitted dose as a function of sample thickness were performed for all samples (S1 - S6) at two values of electron beam energy (6 and 9 MeV) produced by a linear accelerator VARIAN 2100SC. The results showed that the maximum of the normalized transmitted dose of manufactured samples (S2 - S6) is registered at smaller sample thicknesses than for the analyzed commercial bolus (sample S1). The smallest sample thickness corresponding to normalized maximum point dose is obtained for sample S2 (RTV-530). Measurements performed for electron beam energy of 6 and 9 MeV have proven the possibility of using the manufactured samples as bolus in radiotherapy.展开更多
文摘In order to investigate the possibility of using different materials as bolus in radiotherapy, five samples denoted by S2 - S6 were prepared and analyzed by comparison with one available commercial bolus denoted by S1. Sample S1 was a thermoplastic material from Qfix;S2 was a moldable silicon rubber (RTV-530 from Prochima);S3 and S4 were obtained by adding micrometric particles of Al and Cu respectively (at the same mass concentration of 5.5%);S5 was another moldable silicon rubber (GSP400 from Prochima) and S6 was a mixture of GSP400 and micrometric particles of Cu (at the mass concentration of 5.5%). The measurements of normalized transmitted dose as a function of sample thickness were performed for all samples (S1 - S6) at two values of electron beam energy (6 and 9 MeV) produced by a linear accelerator VARIAN 2100SC. The results showed that the maximum of the normalized transmitted dose of manufactured samples (S2 - S6) is registered at smaller sample thicknesses than for the analyzed commercial bolus (sample S1). The smallest sample thickness corresponding to normalized maximum point dose is obtained for sample S2 (RTV-530). Measurements performed for electron beam energy of 6 and 9 MeV have proven the possibility of using the manufactured samples as bolus in radiotherapy.