This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart,...This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart, Germany. Lighting consumes a considerable amount of energy, and devices for smart lighting solutions are among the most purchased smart home devices. As commercialized solutions come with variant features, we empirically evaluate through this study the impact of each one of the energy-related features and provide insights on those that have higher energy saving contribution. The study started by investigating the state-of-the-art of commercialized ICT-based light control solutions, which allowed the extraction of the energy-related features. Based on the outcomes of this study, we generated simulation scenarios and selected evaluations metrics to evaluate the impact of dimming, daylight harvesting, scheduling, and motion detection. The simulation study has been conducted using EnergyPlussimulation tool, which?enables fine-grained realistic evaluation. The results show that adopting smart lighting technologies have a payback period of few years and that the use of these technologies has positive economic and societal impacts, as well as on the environment by considerably reducing gas emissions. However, this positive contribution is highly sensitive to the geographical location, energy prices, and the occupancy profile.展开更多
The photovoltaic module building integration level affects the module temperature and,consequently,its output power.In this work,a methodology has been proposed to estimate the influence of the level of architectural ...The photovoltaic module building integration level affects the module temperature and,consequently,its output power.In this work,a methodology has been proposed to estimate the influence of the level of architectural photovoltaic integration on the photovoltaic energy balance with natural ventilation or with forced cooling systems.The developed methodology is applied for five photovoltaic module technologies(m⁃Si,p⁃Si,a⁃Si,CdTe,and CIGS)on four characteristic locations(Athens,Davos,Stockholm,and Würzburg).To this end,a photovoltaic module thermal radiation parameter,PVj,is introduced in the characterization of the PV module technology,rendering the correlations suitable for building⁃integrated photovoltaic(BIPV)applications,with natural ventilation or with forced cooling systems.The results show that PVj has a significant influence on the energy balances,according to the architectural photovoltaic integration and climatic conditions.Keywords:Photovoltaic cooling;BIPV;Photovoltaic;Ventilation;Photovoltaic integration level in building【OA】(2)Graph⁃Based methodology for Multi⁃Scale generation of energy analysis models from IFC,by Asier Mediavilla,Peru Elguezabal,Natalia Lasarte,Article 112795 Abstract:Process digitalisation and automation is unstoppable in all industries,including construction.However,its widespread adoption,even for non⁃experts,demands easy⁃to⁃use tools that reduce technical requirements.BIM to BEM(Building Energy Models)workflows are a clear example,where ad⁃hoc prepared models are needed.This paper describes a methodology,based on graph techniques,to automate it by highly reducing the input BIM requirements found in similar approaches,being applicable to almost any IFC.This is especially relevant in retrofitting,where reality capture tools(e.g.,3D laser scanning,object recognition in drawings)are prone to create geometry clashes and other inconsistencies,posing higher challenges for automation.Another innovation presented is its multi⁃scale nature,efficiently addressing the surroundings impact in the energy model.The application to selected test cases has been successful and further tests are ongoing,considering a higher variety of BIM models in relation to tools and techniques used and model sizes.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting controls.Many B...Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting controls.Many BASs in use are outdated and suffer from numerous vulnerabilities that stem from the design of the underlying BAS protocol.In this paper,we provide a comprehensive,up-to-date survey on BASs and attacks against seven BAS protocols including BACnet,EnOcean,KNX,LonWorks,Modbus,ZigBee,and Z-Wave.Holistic studies of secure BAS protocols are also presented,covering BACnet Secure Connect,KNX Data Secure,KNX/IP Secure,ModBus/TCP Security,EnOcean High Security and Z-Wave Plus.LonWorks and ZigBee do not have security extensions.We point out how these security protocols improve the security of the BAS and what issues remain.A case study is provided which describes a real-world BAS and showcases its vulnerabilities as well as recommendations for improving the security of it.We seek to raise awareness to those in academia and industry as well as highlight open problems within BAS security.展开更多
The enormous energy use of the building sector and the requirements for indoor living quality that aim to improve occupants' productivity and health, prioritize Smart Buildings as an emerging technology. The Heati...The enormous energy use of the building sector and the requirements for indoor living quality that aim to improve occupants' productivity and health, prioritize Smart Buildings as an emerging technology. The Heating, Ventilation and Air-Conditioning(HVAC) system is considered one of the most critical and essential parts in buildings since it consumes the largest amount of energy and is responsible for humans comfort. Due to the intermittent operation of HVAC systems, faults are more likely to occur, possibly increasing eventually building's energy consumption and/or downgrading indoor living quality. The complexity and large scale nature of HVAC systems complicate the diagnosis of faults in a centralized framework. This paper presents a distributed intelligent fault diagnosis algorithm for detecting and isolating multiple sensor faults in large-scale HVAC systems.Modeling the HVAC system as a network of interconnected subsystems allows the design of a set of distributed sensor fault diagnosis agents capable of isolating multiple sensor faults by applying a combinatorial decision logic and diagnostic reasoning. The performance of the proposed method is investigated with respect to robustness, fault detectability and scalability. Simulations are used to illustrate the effectiveness of the proposed method in the presence of multiple sensor faults applied to a 83-zone HVAC system and to evaluate the sensitivity of the method with respect to sensor noise variance.展开更多
The ways which are used today in order to light houses, offices, and most of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">indoor a...The ways which are used today in order to light houses, offices, and most of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">indoor areas are inefficient as a lot of energy is consumed unnecessarily during the day time. Mainly this problem</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">because the interior lighting design consider the worst case when the light service is at night, </span><span style="font-family:Verdana;">which</span><span style="font-family:Verdana;"> is not always valid. Also in most cases the lighting system design rel</span><span style="font-family:Verdana;">ies</span><span style="font-family:Verdana;"> on people to control the lights switching on and off. This problem is also one of the design concern</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in Green Building. In this paper, a solution to this problem and a method for people’s comfort who use the indoor facilities in industrial building</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is presented. In the proposed smart lighting system, lights switch on automatically when there is somebody in the room or in the occupied space and switch off when there is no occupancy. In addition to this known technique, adjustment of the brightness level of the lights will be possible via the personal computer or any other smart device. In this method, for the illumination level in the area, where is needed to be controlled for better energy saving, </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">light automatically is measured by </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">sensor and considering the amount of background lights coming from outside, automatically the brightness of lights is controlled to reach the preset level that determined for that room. By the means of this method, it is possible to provide better user comfort, avoid human forcedness to switch the light on and off, and hence effective energy sav</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;">. Arduino controller is used to build the controller and to demonstrate the results. Economic analysis was done to calculate the percentage of the energy saving that can be obtained by implementing the proposed smart lighting controller. As an outcome </span><span style="font-family:Verdana;">of </span><span style="font-family:Verdana;">the economic analysis, energy saving norm for an office with </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">standard size was calculated.展开更多
文摘This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart, Germany. Lighting consumes a considerable amount of energy, and devices for smart lighting solutions are among the most purchased smart home devices. As commercialized solutions come with variant features, we empirically evaluate through this study the impact of each one of the energy-related features and provide insights on those that have higher energy saving contribution. The study started by investigating the state-of-the-art of commercialized ICT-based light control solutions, which allowed the extraction of the energy-related features. Based on the outcomes of this study, we generated simulation scenarios and selected evaluations metrics to evaluate the impact of dimming, daylight harvesting, scheduling, and motion detection. The simulation study has been conducted using EnergyPlussimulation tool, which?enables fine-grained realistic evaluation. The results show that adopting smart lighting technologies have a payback period of few years and that the use of these technologies has positive economic and societal impacts, as well as on the environment by considerably reducing gas emissions. However, this positive contribution is highly sensitive to the geographical location, energy prices, and the occupancy profile.
文摘The photovoltaic module building integration level affects the module temperature and,consequently,its output power.In this work,a methodology has been proposed to estimate the influence of the level of architectural photovoltaic integration on the photovoltaic energy balance with natural ventilation or with forced cooling systems.The developed methodology is applied for five photovoltaic module technologies(m⁃Si,p⁃Si,a⁃Si,CdTe,and CIGS)on four characteristic locations(Athens,Davos,Stockholm,and Würzburg).To this end,a photovoltaic module thermal radiation parameter,PVj,is introduced in the characterization of the PV module technology,rendering the correlations suitable for building⁃integrated photovoltaic(BIPV)applications,with natural ventilation or with forced cooling systems.The results show that PVj has a significant influence on the energy balances,according to the architectural photovoltaic integration and climatic conditions.Keywords:Photovoltaic cooling;BIPV;Photovoltaic;Ventilation;Photovoltaic integration level in building【OA】(2)Graph⁃Based methodology for Multi⁃Scale generation of energy analysis models from IFC,by Asier Mediavilla,Peru Elguezabal,Natalia Lasarte,Article 112795 Abstract:Process digitalisation and automation is unstoppable in all industries,including construction.However,its widespread adoption,even for non⁃experts,demands easy⁃to⁃use tools that reduce technical requirements.BIM to BEM(Building Energy Models)workflows are a clear example,where ad⁃hoc prepared models are needed.This paper describes a methodology,based on graph techniques,to automate it by highly reducing the input BIM requirements found in similar approaches,being applicable to almost any IFC.This is especially relevant in retrofitting,where reality capture tools(e.g.,3D laser scanning,object recognition in drawings)are prone to create geometry clashes and other inconsistencies,posing higher challenges for automation.Another innovation presented is its multi⁃scale nature,efficiently addressing the surroundings impact in the energy model.The application to selected test cases has been successful and further tests are ongoing,considering a higher variety of BIM models in relation to tools and techniques used and model sizes.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
基金supported in part by US National Science Foundation awards(2325451,1931871,and 1915780)US Department of Energy Award(DE-EE0009152)Anhui University of Technology,China(QD202368-DT2300002594).
文摘Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting controls.Many BASs in use are outdated and suffer from numerous vulnerabilities that stem from the design of the underlying BAS protocol.In this paper,we provide a comprehensive,up-to-date survey on BASs and attacks against seven BAS protocols including BACnet,EnOcean,KNX,LonWorks,Modbus,ZigBee,and Z-Wave.Holistic studies of secure BAS protocols are also presented,covering BACnet Secure Connect,KNX Data Secure,KNX/IP Secure,ModBus/TCP Security,EnOcean High Security and Z-Wave Plus.LonWorks and ZigBee do not have security extensions.We point out how these security protocols improve the security of the BAS and what issues remain.A case study is provided which describes a real-world BAS and showcases its vulnerabilities as well as recommendations for improving the security of it.We seek to raise awareness to those in academia and industry as well as highlight open problems within BAS security.
基金supported by the European Union’s Horizon 2020 Research and Innovation Programme(739551)(KIOS CoE)。
文摘The enormous energy use of the building sector and the requirements for indoor living quality that aim to improve occupants' productivity and health, prioritize Smart Buildings as an emerging technology. The Heating, Ventilation and Air-Conditioning(HVAC) system is considered one of the most critical and essential parts in buildings since it consumes the largest amount of energy and is responsible for humans comfort. Due to the intermittent operation of HVAC systems, faults are more likely to occur, possibly increasing eventually building's energy consumption and/or downgrading indoor living quality. The complexity and large scale nature of HVAC systems complicate the diagnosis of faults in a centralized framework. This paper presents a distributed intelligent fault diagnosis algorithm for detecting and isolating multiple sensor faults in large-scale HVAC systems.Modeling the HVAC system as a network of interconnected subsystems allows the design of a set of distributed sensor fault diagnosis agents capable of isolating multiple sensor faults by applying a combinatorial decision logic and diagnostic reasoning. The performance of the proposed method is investigated with respect to robustness, fault detectability and scalability. Simulations are used to illustrate the effectiveness of the proposed method in the presence of multiple sensor faults applied to a 83-zone HVAC system and to evaluate the sensitivity of the method with respect to sensor noise variance.
文摘The ways which are used today in order to light houses, offices, and most of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">indoor areas are inefficient as a lot of energy is consumed unnecessarily during the day time. Mainly this problem</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">because the interior lighting design consider the worst case when the light service is at night, </span><span style="font-family:Verdana;">which</span><span style="font-family:Verdana;"> is not always valid. Also in most cases the lighting system design rel</span><span style="font-family:Verdana;">ies</span><span style="font-family:Verdana;"> on people to control the lights switching on and off. This problem is also one of the design concern</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in Green Building. In this paper, a solution to this problem and a method for people’s comfort who use the indoor facilities in industrial building</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is presented. In the proposed smart lighting system, lights switch on automatically when there is somebody in the room or in the occupied space and switch off when there is no occupancy. In addition to this known technique, adjustment of the brightness level of the lights will be possible via the personal computer or any other smart device. In this method, for the illumination level in the area, where is needed to be controlled for better energy saving, </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">light automatically is measured by </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">sensor and considering the amount of background lights coming from outside, automatically the brightness of lights is controlled to reach the preset level that determined for that room. By the means of this method, it is possible to provide better user comfort, avoid human forcedness to switch the light on and off, and hence effective energy sav</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;">. Arduino controller is used to build the controller and to demonstrate the results. Economic analysis was done to calculate the percentage of the energy saving that can be obtained by implementing the proposed smart lighting controller. As an outcome </span><span style="font-family:Verdana;">of </span><span style="font-family:Verdana;">the economic analysis, energy saving norm for an office with </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">standard size was calculated.