The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,expl...The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,exploring the provincial variations in carbon emission efficiency(CEE)in the building sector and identifying the effect of BEESs on CEE is crucial.This study focuses on commercial buildings in China and applies a difference in differences model to evaluate the impact of BEESs on the CEE of commercial buildings.The slacks-based measure–data envelopment analysis model is employed to assess the CEE of commercial buildings in 30 Chinese provinces from 2000 to 2019.Furthermore,heterogeneous tests are used to explore how climate characteristics and economic conditions affect the efficiency of BEESs.The results indicate that BEESs positively influence the CEE of commercial buildings.Specifically,a 1%increase in the intensity of BEESs causes a 0.1484%increase in the CEE of commercial buildings.Moreover,the impact of BEESs is particularly pronounced in the southern and western provinces.This study provides valuable scientific evidence for governments to enhance BEESs implementation.展开更多
This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort o...This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material,such as for thermal upgrades,which consequently incurs additional economic costs.It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions,considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in buildings.In addition,it explores the methods and mechanisms for modeling the operating modes of electric boilers used to collectively improve energy efficiency and indoor climatic conditions.Using the developed mathematical models,the study examines the dynamic states of building energy supply systems and provides recommendations for improving their efficiency.These dynamic models are executed in software environments such as MATLAB/Simscape and Python,where the component detailing schemes for various types of controllers are demonstrated.Additionally,controllers based on reinforcement learning(RL)displayed more adaptive load level management.These RL-based controllers can lower instantaneous power usage by up to 35%,reduce absolute deviations from a comfortable temperature nearly by half,and cut down energy consumption by approximately 1%while maintaining comfort.When the energy source produces a constant energy amount,the RL-based heat controllermore effectively maintains the temperature within the set range,preventing overheating.In conclusion,the introduced energydynamic building model and its software implementation offer a versatile tool for researchers,enabling the simulation of various energy supply systems to achieve optimal energy efficiency and indoor climate control in buildings.展开更多
Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impac...Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings.Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool(eQUEST).The model is calibrated using the Normalized Mean Bias Error(NMBE)and Coefficient of Variation of Root Mean Square Error(CV(RMSE))method.The model satisfies the NMBE and CV(RMSE)criteria set by the American Society of Heating,Refrigeration,and Air-Conditioning(ASHRAE)Guideline 14,Federal Energy Management Program(FEMP),and International Performance Measurement and Verification Protocol(IPMVP)for building energy model calibration.The values of the parameters are varied in two levels,and then the percentage change in output is calculated.Fractional factorial analysis on eight parameters with the highest percentage change in energy performance is performed at two levels in a statistical software JMP.For building A,the top 3 parameters from the percentage change method are:Heating setpoint,cooling setpoint and server room.From fractional factorial design,the top 3 parameters are:heating setpoint(p-value=0.00129),cooling setpoint(p-value=0.00133),and setback control(p-value=0.00317).For building B,the top 3 parameters from both methods are:Server room(pvalue=0.0000),heating setpoint(p-value=0.00014),and cooling setpoint(p-value=0.00035).If the best values for all top three parameters are taken simultaneously,energy efficiency improves by 29%for building A and 35%for building B.展开更多
The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This artic...The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.展开更多
Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy ...Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.展开更多
In order to benchmark the energy efficiency standards for residential buildings in China,the Hong Kong building environment assessment method(HK-BEAM)is chosen as the compliance criteria for assessment.The annual en...In order to benchmark the energy efficiency standards for residential buildings in China,the Hong Kong building environment assessment method(HK-BEAM)is chosen as the compliance criteria for assessment.The annual energy consumption and the overall thermal transfer value(OTTV)of a baseline residential building prescribed in the Chinese codes and the HK-BEAM are evaluated and compared by the energy budget approach.The results show that in the Chinese codes,the OTTV of the residential building is lower,but the annual energy consumption and the cooling load are higher than those in the HK-BEAM.The annual energy use difference amounts to 13.4%.All the compliance criteria except the ventilation rate and the equipment power in the Chinese codes are set higher than those in the HK-BEAM.However,the compliance criteria of the ventilation rate and the equipment power,especially the ventilation rate,result in much energy consumption,which ultimately induces a high energy budget for residential buildings.展开更多
There is a huge amount of energy savings potential in public building sector that has yet to be realized.By prioritizing energy efficiency in its own buildings and thus promoting the development of required knowledge ...There is a huge amount of energy savings potential in public building sector that has yet to be realized.By prioritizing energy efficiency in its own buildings and thus promoting the development of required knowledge in terms of new technology and construction methods,the public sector will lead the way in efforts to increase the rate of renovations.The low-cost insulation strategies and a comparison of cost with existing insulation materials has been described in this study.We have repeatedly faced energy crises and will continue to do so in the future if appropriate action is not taken in a timely manner.Properly implementing energy-saving initiatives in for achieving thermal comfort in buildings as well as reducing the energy costs would undoubtedly inspire the residential sector,resulting in significant reductions in energy usage.Simulations were carried out to study insulation layers on various building components like exterior walls,floor and roofs,generating different scenarios for a building as a base model,which were then compared and analysed to verify the literature used to develop the cases.The proposed recommendations,which have been validated,are certain to increase building energy efficiency,achieve thermal comfort in low cost than what is currently being used.展开更多
Analytic hierarchy process(Group AHP) is combined with two different methods of assigning experts' priority to weight indicators in building energy efficiency assessment.One is to assign the experts' priority ...Analytic hierarchy process(Group AHP) is combined with two different methods of assigning experts' priority to weight indicators in building energy efficiency assessment.One is to assign the experts' priority averagely,and the other is to use cluster analysis to assign experts' priority.The results show that,1) Different expert's priority assigns result in great different weights of indicators in building energy efficiency assessment,therefore,the method of assigning experts' priority should be taken into account carefully while weighting indicators of building energy efficiency assessment using Group AHP;2) Three indicators are found to be overwhelmingly important in residential building energy efficiency assessment in the hot summer and cold winter zone in China.They are 'Outdoor & indoor shadow','Heating & air-conditioning facilities' and 'Insulation of envelope';3) The method combining cluster analysis with Group AHP to weight indicator of building energy efficiency assessment has the advantage of finding overwhelming important indicator,whereas,some less important indicators have a tendency to be ignored.A useful reference is provided for building energy conservation including policy revision and energy efficient residential building design.展开更多
Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal eng...Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal engineering design,heating ventilation and air conditioning design,and energy consumption simulations.Focusing on the key issues such as low spatial coverage and the lack of daily or higher time resolution data,daily and hourly models of the surface meteorological data and solar radiation were established and evaluated.Surface meteorological data and solar radiation data were generated for 1019 cities and towns in China from 1988 to 2017.The data were carefully compared,and the accuracy was proved to be high.All the meteorological parameters can be assessed in the building sector via a sharing platform.Then,country-level meteorological parameters were developed for energy-efficient building assessment in China,based on actual meteorological data in the present study.This set of meteorological parameters may facilitate engineering applications as well as allowing the updating and expansion of relevant building energy efficiency standards.The study was supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period,named Fundamental parameters on building energy efficiency in China,comprising of 15 top-ranking universities and institutions in China.展开更多
It is researched that rural residential buildings in Heilongjieng consume high energy and the living environment is poor. The research aimed at designing low-carbon and energy-saving buildings in order to reduce energ...It is researched that rural residential buildings in Heilongjieng consume high energy and the living environment is poor. The research aimed at designing low-carbon and energy-saving buildings in order to reduce energy consumption by applying energy storage. Besides, the research used composite solar panel, waste- based inorganic foam materials, and polystyrene board as construction materials and integrated energy collection, living environment and farming by energy storage system. It is notable that the research would reduce pollution on environment caused by residential buildings, which coincides with national economy development and en- ergy strategy, promoting construction material industry development, with high social and economic benefits.展开更多
The purpose of the comprehensive benefit evaluation of the existing building energy saving renovation project is to promote the healthy development of the energy saving reconstruction. Therefore, it is necessary to re...The purpose of the comprehensive benefit evaluation of the existing building energy saving renovation project is to promote the healthy development of the energy saving reconstruction. Therefore, it is necessary to reflect the value and function of incentive and restraint. The concrete embodiment is that: improving energy saving standard renovation of existing buildings, promoting the construction of energy efficiency labeling system, and strengthening the construction of government supervision system by the comprehensive benefit evaluation.展开更多
The investment risk management of the existing building energy-saving renovation project for ESCO cannot be separated from the scientific risk measurement and evaluation. The investment risk assessment is the basis of...The investment risk management of the existing building energy-saving renovation project for ESCO cannot be separated from the scientific risk measurement and evaluation. The investment risk assessment is the basis of investment decision and project implementation. Based on the content analysis and balance of evaluation principle of investment risk evaluation on the existing building energy-saving renovation project, we set up three levels of existing building energy-saving renovation project investment risk evaluation index system, use fuzzy comprehensive evaluation method to evaluate the quantitative process, get the scientific assessment of the investment risk of existing building energy-saving renovation project, and support the investment risk response strategy and control measures of existing building energy-saving renovation project for ESCO.展开更多
The market development and policy matching of existing building energy-saving retrofits determine the effectiveness of policies in promoting the operation of existing building energy-saving retrofit market.Based on th...The market development and policy matching of existing building energy-saving retrofits determine the effectiveness of policies in promoting the operation of existing building energy-saving retrofit market.Based on the perspective of market development to evaluate the effectiveness of existing building energy-saving transformation policy,it is necessary to clarify the basic connotation of the effectiveness of existing building energy-saving transformation policy,systematically analyze the evaluation content,construct a multi-level evaluation index system,and select scientific and effective quantitative evaluation methods to implement a strict evaluation process.展开更多
ESCO is the internal driving force for the development of the existing building energy-saving renovation market,and the driving effect of the ESCO market depends on scientific and effective comprehensive benefit evalu...ESCO is the internal driving force for the development of the existing building energy-saving renovation market,and the driving effect of the ESCO market depends on scientific and effective comprehensive benefit evaluation.Based on analysis of the status qua at home and abroad,this paper reveals the necessity and value of research existing Building Energy Saving ESCO market development driving force effectiveness evaluation.The purpose of ESCO driving force benefit evaluation-oriented,establish the basic principles of evaluation index system of choice.Through the analysis of the evaluation content of the three dimensions of economic benefit,environmental benefit and social benefit,the comprehensive evaluation index system of the target level,criterion level and index level of the benefit evaluation of the existing building energy-saving renovation market development is constructed.AHP and fuzzy comprehensive evaluation of the combination,construct quantitative models of energy-saving drive ESCO market development role in the evaluation of the effectiveness of existing buildings.Based on the quantitative evaluation process of ESCO’s role in the development of our country’s existing building energysaving renovation market,it is necessary to scientifically understand the current status of ESCO’s driving role,and reveal the path to improve the efficiency of ESCO-driven development of the existing building’s energy-saving renovation market,in order to enhance the internal driving force of ESCO to promote.The existing building energy-saving renovation market is developing in a healthy and orderly manner.展开更多
Detailed visualisation and data analysis of occupancy patterns including spatial distribution and temporal variations are of great importance to delivering energy efficient and productive buildings. An experimental st...Detailed visualisation and data analysis of occupancy patterns including spatial distribution and temporal variations are of great importance to delivering energy efficient and productive buildings. An experimental study comprising 24-h monitoring over 30 full days was conducted in a university library building.Occupancy profiles have been monitored and analysis has been carried out. Central to this monitoring study is the Wi-Fi based indoor positioning system based on the measured Wi-Fi devices' number and locations and data mining methods. Distinct from traditional occupancy and energy studies,more detailed informationrelated to the indoor positions and number of occupants has offered a better understanding of building user behaviour. The implication of the occupancy patterns for energy( e. g. lighting and other building services) efficiency is assessed,assisted with data from lighting sensors where needed. It is found occupancy patterns change dramatically with time. Also,the energy waste patterns have been identified through the method of data association rule mining. If the identified energy waste is removed,the total energy consumption can be reduced by 26. 1%. The indoor positioning information also has implications for optimizing space use,opening hours as well as staff deployment. The work could be extended to more rooms with diverse functions,other seasons and other types of non-domestic buildings for a more comprehensive understanding of building user behaviour and energy efficiency.展开更多
An energy consumption analysis based on the heating characteristic of a building with central heat exchanger in a university of Tianjin was done,and the feasibility of intermittent heating with variable speed pumps wa...An energy consumption analysis based on the heating characteristic of a building with central heat exchanger in a university of Tianjin was done,and the feasibility of intermittent heating with variable speed pumps was discussed. By comparing various methods of energy consumption analysis,a modified Bin method based on the weather data in Tianjin was adopted. The heat consumption of the buildings under intermittent heating mode was calculated and compared with continuous heating mode,the result shows that intermittent heating can reduce energy consumption for 1 941 759 kW·h,save standard coal for 341 t,and reduce pump power consumption for 72 679 kW·h annually. Intermittent operation by means of varying the pump frequency not only leads to savings in fuel consumption and reduction in pollutant emissions,but also reduces operating costs significantly and it is an ideal energy-saving method. By analyzing the results,the recommendations of heating operation regulation and the transformation of pipe network were proposed separately to different kinds of buildings in colleges,such as laboratory building,teaching building.展开更多
This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-...This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-intensity, fire-resistance, sound-insulation, heat-insulation and no-pollution. Composed with concrete materials, a new type of bearing and energy-efficient block can be gained, which is kind of excellent wall materials and has a wide application prospect.展开更多
The building energy efficiency is determined by the climatic region and the energy-saving measures. In this paper an assessment model for energy efficiency of the rural residential buildings in the northern China was ...The building energy efficiency is determined by the climatic region and the energy-saving measures. In this paper an assessment model for energy efficiency of the rural residential buildings in the northern China was established by the method of whole life cycle. The energy consumption of the rural residential buildings in different stages was analyzed through quantitative method in this model. At the same time, the corresponding energy efficiency assessment system was developed.展开更多
Buildings account for 40% of global energy consumption and nearly one-third of global CO_(2) emissions;and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Attractive ...Buildings account for 40% of global energy consumption and nearly one-third of global CO_(2) emissions;and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Attractive opportunities exist to reduce buildings’ energy use at lower costs and higher returns than in other sectors. This paper analyzes the concerns of uncertainty, in terms of transaction costs, to the real estate developers when they make decisions about investing in Building Energy Efficiency (BEE). To solicit views of developers regarding BEE investment, in-depth interviews were conducted with 15 executives and architects who work in big real estate development firms covering 80% of real estate activities in Hong Kong. This research applies transaction cost economics (TCE) to study the underlying reasons resulting from uncertainty that cause market reluctance to accept BEE by choice. It provides a detailed analysis of the current situation and future prospects for BEE adoption through studying the impacts from three aspects: economic, market and policy uncertainties. It delineates the market and suggests possible policy solutions to overcome the uncertainties and to attain the large-scale deployment of energy-efficient building techniques. The findings establish the groundwork for future studies on how to choose a particular policy package and what roles government should play to solve the existing problems in BEE development.展开更多
Efficient Air Conditioning (A/C) system is the key to reducing energy consumption in building operation. In order to decrease the energy consumption in an A/C system, a method to calculate the optimal tube row number ...Efficient Air Conditioning (A/C) system is the key to reducing energy consumption in building operation. In order to decrease the energy consumption in an A/C system, a method to calculate the optimal tube row number of a direct expansion (DX) cooling coil for minimizing the entropy generation in the DX cooling which functioned as evaporator in the A/C system was developed. The optimal tube row numbers were determined based on the entropy generation minimization (EGM) approach. Parametric studies were conducted to demonstrate the application of the analytical calculation method. Optimal tube row number for different air mass flow rates, inlet air temperatures and sensible cooling loads were investigated. It was found that the optimal tube row number of a DX cooling coil was in the range of 5 - 9 under normal operating conditions. The optimal tube row number was less when the mass flow rate and inlet air temperature were increased. The tube row number increased when the sensible cooling load was increased. The exergy loss when using a non-optimal and optimal tube row numbers was compared to show the advantage of using the optimal tube row number. The decrease of exery loss ranged from around 24% to 70%. Therefore the new analytical method developed in this paper offers a good practice guide for the design of DX cooling coils for energy conservation.展开更多
基金funded by the National Social Science Foundation of China[Grant No.23CJY018]the Fundamental Research Funds for the Central Universities[Grant No.JBK2406049]+2 种基金the National Natural Science Foundation of China[Grant No.72003151],[Grant No.72173100]the Soft Science Research Program of Sichuan Province[Grant No.2022JDR0227]Projects from the Research Center on Xi Jinping’s Economic Thought,and the Fundamental Research Funds for the“Guanghua Talent Program”of the Southwestern University of Finance and Economics.
文摘The building sector plays a crucial role in the worldwide shift toward achieving net-zero emissions.Building energy efficiency standards(BEESs)are highly effective policies for reducing carbon emissions.Therefore,exploring the provincial variations in carbon emission efficiency(CEE)in the building sector and identifying the effect of BEESs on CEE is crucial.This study focuses on commercial buildings in China and applies a difference in differences model to evaluate the impact of BEESs on the CEE of commercial buildings.The slacks-based measure–data envelopment analysis model is employed to assess the CEE of commercial buildings in 30 Chinese provinces from 2000 to 2019.Furthermore,heterogeneous tests are used to explore how climate characteristics and economic conditions affect the efficiency of BEESs.The results indicate that BEESs positively influence the CEE of commercial buildings.Specifically,a 1%increase in the intensity of BEESs causes a 0.1484%increase in the CEE of commercial buildings.Moreover,the impact of BEESs is particularly pronounced in the southern and western provinces.This study provides valuable scientific evidence for governments to enhance BEESs implementation.
文摘This article focuses on the challenges ofmodeling energy supply systems for buildings,encompassing both methods and tools for simulating thermal regimes and engineering systems within buildings.Enhancing the comfort of living or working in buildings often necessitates increased consumption of energy and material,such as for thermal upgrades,which consequently incurs additional economic costs.It is crucial to acknowledge that such improvements do not always lead to a decrease in total pollutant emissions,considering emissions across all stages of production and usage of energy and materials aimed at boosting energy efficiency and comfort in buildings.In addition,it explores the methods and mechanisms for modeling the operating modes of electric boilers used to collectively improve energy efficiency and indoor climatic conditions.Using the developed mathematical models,the study examines the dynamic states of building energy supply systems and provides recommendations for improving their efficiency.These dynamic models are executed in software environments such as MATLAB/Simscape and Python,where the component detailing schemes for various types of controllers are demonstrated.Additionally,controllers based on reinforcement learning(RL)displayed more adaptive load level management.These RL-based controllers can lower instantaneous power usage by up to 35%,reduce absolute deviations from a comfortable temperature nearly by half,and cut down energy consumption by approximately 1%while maintaining comfort.When the energy source produces a constant energy amount,the RL-based heat controllermore effectively maintains the temperature within the set range,preventing overheating.In conclusion,the introduced energydynamic building model and its software implementation offer a versatile tool for researchers,enabling the simulation of various energy supply systems to achieve optimal energy efficiency and indoor climate control in buildings.
基金funded in part by the Industrial Assessment Center Projectsupported by grants fromthe US Department of Energy and by the West Virginia Development Office.
文摘Building energy performance is a function of numerous building parameters.In this study,sensitivity analysis on twenty parameters is performed to determine the top three parameters that have the most significant impact on the energy performance of buildings.Actual data from two fully operational commercial buildings were collected and used to develop a building energy model in the Quick Energy Simulation Tool(eQUEST).The model is calibrated using the Normalized Mean Bias Error(NMBE)and Coefficient of Variation of Root Mean Square Error(CV(RMSE))method.The model satisfies the NMBE and CV(RMSE)criteria set by the American Society of Heating,Refrigeration,and Air-Conditioning(ASHRAE)Guideline 14,Federal Energy Management Program(FEMP),and International Performance Measurement and Verification Protocol(IPMVP)for building energy model calibration.The values of the parameters are varied in two levels,and then the percentage change in output is calculated.Fractional factorial analysis on eight parameters with the highest percentage change in energy performance is performed at two levels in a statistical software JMP.For building A,the top 3 parameters from the percentage change method are:Heating setpoint,cooling setpoint and server room.From fractional factorial design,the top 3 parameters are:heating setpoint(p-value=0.00129),cooling setpoint(p-value=0.00133),and setback control(p-value=0.00317).For building B,the top 3 parameters from both methods are:Server room(pvalue=0.0000),heating setpoint(p-value=0.00014),and cooling setpoint(p-value=0.00035).If the best values for all top three parameters are taken simultaneously,energy efficiency improves by 29%for building A and 35%for building B.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China(Grant No.20JHQ095).
文摘The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.
文摘Green energy conservation is the mainstream trend in the current development of the construction industry.The application of energy-saving technology in building electrical system design can effectively reduce energy consumption,avoid unnecessary energy consumption,and truly achieve energy conservation and environmental protection.Based on this,the article elaborates on the principles of energy-saving design in building electrical systems,and actively explores the application of energy-saving technologies from different perspectives such as optimizing power supply and distribution system design,adopting high-efficiency energy-saving lighting equipment,applying renewable energy,promoting smart home technology,and improving the efficiency of building electrical equipment.
基金The Natural Science Foundation of Tianjin(No.08JCYBJC26800)
文摘In order to benchmark the energy efficiency standards for residential buildings in China,the Hong Kong building environment assessment method(HK-BEAM)is chosen as the compliance criteria for assessment.The annual energy consumption and the overall thermal transfer value(OTTV)of a baseline residential building prescribed in the Chinese codes and the HK-BEAM are evaluated and compared by the energy budget approach.The results show that in the Chinese codes,the OTTV of the residential building is lower,but the annual energy consumption and the cooling load are higher than those in the HK-BEAM.The annual energy use difference amounts to 13.4%.All the compliance criteria except the ventilation rate and the equipment power in the Chinese codes are set higher than those in the HK-BEAM.However,the compliance criteria of the ventilation rate and the equipment power,especially the ventilation rate,result in much energy consumption,which ultimately induces a high energy budget for residential buildings.
文摘There is a huge amount of energy savings potential in public building sector that has yet to be realized.By prioritizing energy efficiency in its own buildings and thus promoting the development of required knowledge in terms of new technology and construction methods,the public sector will lead the way in efforts to increase the rate of renovations.The low-cost insulation strategies and a comparison of cost with existing insulation materials has been described in this study.We have repeatedly faced energy crises and will continue to do so in the future if appropriate action is not taken in a timely manner.Properly implementing energy-saving initiatives in for achieving thermal comfort in buildings as well as reducing the energy costs would undoubtedly inspire the residential sector,resulting in significant reductions in energy usage.Simulations were carried out to study insulation layers on various building components like exterior walls,floor and roofs,generating different scenarios for a building as a base model,which were then compared and analysed to verify the literature used to develop the cases.The proposed recommendations,which have been validated,are certain to increase building energy efficiency,achieve thermal comfort in low cost than what is currently being used.
基金Project(2010R10036) supported by the Science and Technology Department of Zhejiang Province, China
文摘Analytic hierarchy process(Group AHP) is combined with two different methods of assigning experts' priority to weight indicators in building energy efficiency assessment.One is to assign the experts' priority averagely,and the other is to use cluster analysis to assign experts' priority.The results show that,1) Different expert's priority assigns result in great different weights of indicators in building energy efficiency assessment,therefore,the method of assigning experts' priority should be taken into account carefully while weighting indicators of building energy efficiency assessment using Group AHP;2) Three indicators are found to be overwhelmingly important in residential building energy efficiency assessment in the hot summer and cold winter zone in China.They are 'Outdoor & indoor shadow','Heating & air-conditioning facilities' and 'Insulation of envelope';3) The method combining cluster analysis with Group AHP to weight indicator of building energy efficiency assessment has the advantage of finding overwhelming important indicator,whereas,some less important indicators have a tendency to be ignored.A useful reference is provided for building energy conservation including policy revision and energy efficient residential building design.
基金Project(2018YFC0704500)supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period。
文摘Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector.Meteorological parameters are the prerequisites of building thermal engineering design,heating ventilation and air conditioning design,and energy consumption simulations.Focusing on the key issues such as low spatial coverage and the lack of daily or higher time resolution data,daily and hourly models of the surface meteorological data and solar radiation were established and evaluated.Surface meteorological data and solar radiation data were generated for 1019 cities and towns in China from 1988 to 2017.The data were carefully compared,and the accuracy was proved to be high.All the meteorological parameters can be assessed in the building sector via a sharing platform.Then,country-level meteorological parameters were developed for energy-efficient building assessment in China,based on actual meteorological data in the present study.This set of meteorological parameters may facilitate engineering applications as well as allowing the updating and expansion of relevant building energy efficiency standards.The study was supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period,named Fundamental parameters on building energy efficiency in China,comprising of 15 top-ranking universities and institutions in China.
文摘It is researched that rural residential buildings in Heilongjieng consume high energy and the living environment is poor. The research aimed at designing low-carbon and energy-saving buildings in order to reduce energy consumption by applying energy storage. Besides, the research used composite solar panel, waste- based inorganic foam materials, and polystyrene board as construction materials and integrated energy collection, living environment and farming by energy storage system. It is notable that the research would reduce pollution on environment caused by residential buildings, which coincides with national economy development and en- ergy strategy, promoting construction material industry development, with high social and economic benefits.
基金supported by Nature Science Foundation of China (Grant No. 71171141)Soft Science Research Project of MOE (Grant No. 2013-R1-14)Social Science Planning Project in Tianjin City (Grant No. TJGLHQ1403)
文摘The purpose of the comprehensive benefit evaluation of the existing building energy saving renovation project is to promote the healthy development of the energy saving reconstruction. Therefore, it is necessary to reflect the value and function of incentive and restraint. The concrete embodiment is that: improving energy saving standard renovation of existing buildings, promoting the construction of energy efficiency labeling system, and strengthening the construction of government supervision system by the comprehensive benefit evaluation.
基金supported by the National Natural Science Foundation of China (Grant No. 71573188)the Soft Science Research Project of Ministry of Housing and Urban - Rural Development (Grant No. 2013-R1-14)Tianjin Social Sciences Planning Post-funded Projects (Grant No. TJGLHQ1403)
文摘The investment risk management of the existing building energy-saving renovation project for ESCO cannot be separated from the scientific risk measurement and evaluation. The investment risk assessment is the basis of investment decision and project implementation. Based on the content analysis and balance of evaluation principle of investment risk evaluation on the existing building energy-saving renovation project, we set up three levels of existing building energy-saving renovation project investment risk evaluation index system, use fuzzy comprehensive evaluation method to evaluate the quantitative process, get the scientific assessment of the investment risk of existing building energy-saving renovation project, and support the investment risk response strategy and control measures of existing building energy-saving renovation project for ESCO.
基金supported by the National Natural Fund of China(Grant No.71872122)Later Stage Support Project of Philosophy and Social Sciences Research of the Ministry of Education of China(Grant No.16JHQ031)+1 种基金Later Stage Support Project of Tianjin Social Science Planning(Grant No.TJGLHQ1403)Higher Education Innovation Team of Tianjin(Grant No.TD13-5006)。
文摘The market development and policy matching of existing building energy-saving retrofits determine the effectiveness of policies in promoting the operation of existing building energy-saving retrofit market.Based on the perspective of market development to evaluate the effectiveness of existing building energy-saving transformation policy,it is necessary to clarify the basic connotation of the effectiveness of existing building energy-saving transformation policy,systematically analyze the evaluation content,construct a multi-level evaluation index system,and select scientific and effective quantitative evaluation methods to implement a strict evaluation process.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Ministry of Education of China(20JHQ095)Higher Education Innovation Team of Tianjin(TD13-5006).
文摘ESCO is the internal driving force for the development of the existing building energy-saving renovation market,and the driving effect of the ESCO market depends on scientific and effective comprehensive benefit evaluation.Based on analysis of the status qua at home and abroad,this paper reveals the necessity and value of research existing Building Energy Saving ESCO market development driving force effectiveness evaluation.The purpose of ESCO driving force benefit evaluation-oriented,establish the basic principles of evaluation index system of choice.Through the analysis of the evaluation content of the three dimensions of economic benefit,environmental benefit and social benefit,the comprehensive evaluation index system of the target level,criterion level and index level of the benefit evaluation of the existing building energy-saving renovation market development is constructed.AHP and fuzzy comprehensive evaluation of the combination,construct quantitative models of energy-saving drive ESCO market development role in the evaluation of the effectiveness of existing buildings.Based on the quantitative evaluation process of ESCO’s role in the development of our country’s existing building energysaving renovation market,it is necessary to scientifically understand the current status of ESCO’s driving role,and reveal the path to improve the efficiency of ESCO-driven development of the existing building’s energy-saving renovation market,in order to enhance the internal driving force of ESCO to promote.The existing building energy-saving renovation market is developing in a healthy and orderly manner.
文摘Detailed visualisation and data analysis of occupancy patterns including spatial distribution and temporal variations are of great importance to delivering energy efficient and productive buildings. An experimental study comprising 24-h monitoring over 30 full days was conducted in a university library building.Occupancy profiles have been monitored and analysis has been carried out. Central to this monitoring study is the Wi-Fi based indoor positioning system based on the measured Wi-Fi devices' number and locations and data mining methods. Distinct from traditional occupancy and energy studies,more detailed informationrelated to the indoor positions and number of occupants has offered a better understanding of building user behaviour. The implication of the occupancy patterns for energy( e. g. lighting and other building services) efficiency is assessed,assisted with data from lighting sensors where needed. It is found occupancy patterns change dramatically with time. Also,the energy waste patterns have been identified through the method of data association rule mining. If the identified energy waste is removed,the total energy consumption can be reduced by 26. 1%. The indoor positioning information also has implications for optimizing space use,opening hours as well as staff deployment. The work could be extended to more rooms with diverse functions,other seasons and other types of non-domestic buildings for a more comprehensive understanding of building user behaviour and energy efficiency.
文摘An energy consumption analysis based on the heating characteristic of a building with central heat exchanger in a university of Tianjin was done,and the feasibility of intermittent heating with variable speed pumps was discussed. By comparing various methods of energy consumption analysis,a modified Bin method based on the weather data in Tianjin was adopted. The heat consumption of the buildings under intermittent heating mode was calculated and compared with continuous heating mode,the result shows that intermittent heating can reduce energy consumption for 1 941 759 kW·h,save standard coal for 341 t,and reduce pump power consumption for 72 679 kW·h annually. Intermittent operation by means of varying the pump frequency not only leads to savings in fuel consumption and reduction in pollutant emissions,but also reduces operating costs significantly and it is an ideal energy-saving method. By analyzing the results,the recommendations of heating operation regulation and the transformation of pipe network were proposed separately to different kinds of buildings in colleges,such as laboratory building,teaching building.
文摘This paper introduces a new type of paper-frame cavernous material, which is a made-up hollow material, by using silicate-cinder size to drench and daub. It possesses excellent performances such as light-weight, high-intensity, fire-resistance, sound-insulation, heat-insulation and no-pollution. Composed with concrete materials, a new type of bearing and energy-efficient block can be gained, which is kind of excellent wall materials and has a wide application prospect.
文摘The building energy efficiency is determined by the climatic region and the energy-saving measures. In this paper an assessment model for energy efficiency of the rural residential buildings in the northern China was established by the method of whole life cycle. The energy consumption of the rural residential buildings in different stages was analyzed through quantitative method in this model. At the same time, the corresponding energy efficiency assessment system was developed.
文摘Buildings account for 40% of global energy consumption and nearly one-third of global CO_(2) emissions;and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Attractive opportunities exist to reduce buildings’ energy use at lower costs and higher returns than in other sectors. This paper analyzes the concerns of uncertainty, in terms of transaction costs, to the real estate developers when they make decisions about investing in Building Energy Efficiency (BEE). To solicit views of developers regarding BEE investment, in-depth interviews were conducted with 15 executives and architects who work in big real estate development firms covering 80% of real estate activities in Hong Kong. This research applies transaction cost economics (TCE) to study the underlying reasons resulting from uncertainty that cause market reluctance to accept BEE by choice. It provides a detailed analysis of the current situation and future prospects for BEE adoption through studying the impacts from three aspects: economic, market and policy uncertainties. It delineates the market and suggests possible policy solutions to overcome the uncertainties and to attain the large-scale deployment of energy-efficient building techniques. The findings establish the groundwork for future studies on how to choose a particular policy package and what roles government should play to solve the existing problems in BEE development.
文摘Efficient Air Conditioning (A/C) system is the key to reducing energy consumption in building operation. In order to decrease the energy consumption in an A/C system, a method to calculate the optimal tube row number of a direct expansion (DX) cooling coil for minimizing the entropy generation in the DX cooling which functioned as evaporator in the A/C system was developed. The optimal tube row numbers were determined based on the entropy generation minimization (EGM) approach. Parametric studies were conducted to demonstrate the application of the analytical calculation method. Optimal tube row number for different air mass flow rates, inlet air temperatures and sensible cooling loads were investigated. It was found that the optimal tube row number of a DX cooling coil was in the range of 5 - 9 under normal operating conditions. The optimal tube row number was less when the mass flow rate and inlet air temperature were increased. The tube row number increased when the sensible cooling load was increased. The exergy loss when using a non-optimal and optimal tube row numbers was compared to show the advantage of using the optimal tube row number. The decrease of exery loss ranged from around 24% to 70%. Therefore the new analytical method developed in this paper offers a good practice guide for the design of DX cooling coils for energy conservation.