The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewa...The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewall air supply.The experimental results show that the indoor vertical temperature distributions under different condition are similar.The maximum vertical temperature difference(MVTD)is up to about 20 ℃,and it linearly changes with the sol-air temperature.The indoor vertical temperature gradients(VTGs)in the upper,central and lower zones are different.The influence of the sol-air temperature on the VTGs in the upper and the lower zones is greater than that in the central zone.The characteristics of the VTGs in the three zones affected by the air supply volume are the same as those affected by the sol-air temperature.Besides,because of the small air velocity,the predicted mean vote(PMV)on comfort in the occupied zone is slightly high and the air temperature difference between the head and the ankle is usually more than 3 ℃.展开更多
The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick...The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.展开更多
By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different...By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different heating ways,to provide references for choosing a suitable heating way in the local area.展开更多
In this study, the indoor environmental quality (IEQ) in air conditioned residential buildings in a dry desert climate is examined from the perspective of occupants via two aspects: thermal comfort and indoor air qual...In this study, the indoor environmental quality (IEQ) in air conditioned residential buildings in a dry desert climate is examined from the perspective of occupants via two aspects: thermal comfort and indoor air quality. The study presents statistical data about the domestic-occupant thermal comfort sensations together with data describing the indoor air quality in Kuwaiti residential buildings. With respect to the latter, the overall IEQ acceptance using two measurements namely: physical measurements and subjective information collected via questionnaires, was used to evaluate 111 occupants living in twenty five air-conditioned residential buildings in the state of Kuwait. The operative temperature based on Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) was identified using linear regression analysis of responses on the ASHRAE seven-point thermal sensation scale and was found to be 25.2°C and 23.3°C, respectively, in the summer season. Indoor air quality (IAQ) with respect to carbon dioxide concentration level was compared with the acceptable limits of international standards, i.e. ASHRAE Standard 62.1 [1]. The proposed overall IEQ acceptance findings in residential buildings show CO2 concentration level between 909 and 1250 ppm. However, this may be considered a higher level of CO2 concentration, which may require increasing ventilation rate through window operation or mechanical ventilation.展开更多
Indoor Environmental Quality (IEQ) deals with providing a healthy and comfortable indoor environment. Most of international sustainability rating systems consider IEQ as a key perspective for developing sustainable ...Indoor Environmental Quality (IEQ) deals with providing a healthy and comfortable indoor environment. Most of international sustainability rating systems consider IEQ as a key perspective for developing sustainable buildings. Educational buildings include large number of people which increase the need to provide appropriate IEQ. Accordingly, there is a critical need to frequently assess of IEQ in this type of buildings in order to maintain the satisfactory level of IEQ. This paper aims to develop a framework for assessing and improving the IEQ of educational buildings in Saudi Arabia through measuring the IEQ parameters and integrating these results with Building Information Modeling (BIM). The key IEQ parameters considered in this study include thermal comfort, indoor air quality and visual comfort. These parameters have been measured by comfort-sense system, indoor air quality meter and light meter respectively. The measured data are integrated with BIM model in order to track the IEQ problems, and to develop IEQ history over time. By using the proposed framework, the IEQ can be tracked and improved. The IEQ assessment framework has been implemented on educational building in Saudi Arabia as a case study to validate the process and perform the necessary modifications and improvements.展开更多
Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concer...Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concerns may include thermal environment, luminous environment and acoustics environment. Types of energy used are an important variable that contributes to thermal comfort. Physical structure of the school building is another factor to be taken into consideration. This article established a relationship between thermal comfort inside schools and types of energy flows which have been consumed to maintain the level of comfort required, controlled by the building fabric and consequent economic factors that affect energy consumption of school buildings. Different approaches were applied in order to achieve the research objectives. Field surveys, field measurements and analyzing historical data were the most approaches followed to implement this study. The final outputs of this work have a national value nationwide: establishing a relationship among thermal comfort, energy flows and building fabric is of importance. Furthermore, it is of great importance to the decision maker for educational facilities. Research will also establish a wide platform based on scientific investigations for developing climate responsive school architecture in Jordan.展开更多
In light of China s Ninth Five-year Plan (1996-2000) for Electric Power Industry & the Long Term Targets by the Year 2010, the paper considers the strategy for developing China’s thermal power in the 21st century...In light of China s Ninth Five-year Plan (1996-2000) for Electric Power Industry & the Long Term Targets by the Year 2010, the paper considers the strategy for developing China’s thermal power in the 21st century shall be the efficiency and cleaning technology of coal use. Especially important is the structure of power sources and configuration of technology process, and secondly the implementation of energy saving and environmental protection ideology in the various stages of thermal power construction and design work.展开更多
The current ventilation condition of the hot and humid regions was analyzed through on-site investigation. It is found that residents in this region expect to improve indoor thermal environment through natural ventila...The current ventilation condition of the hot and humid regions was analyzed through on-site investigation. It is found that residents in this region expect to improve indoor thermal environment through natural ventilation as much as possible. Then,it comes to a conclusion by the field test that natural ventilation has certain practical effect on improving indoor thermal environment. CFD simulation software is employed to verify the test result. Based on PMV modified model,and according to norms,geography and climate combined with the measured and simulated results,the application of the time and effectiveness of natural ventilation in hot and humid region were analyzed,to some extent,providing a basis for reducing the air-conditioner's runtime with natural ventilation.展开更多
With the continuous deepening of China’s rural construction and development,people’s living conditions are improved day by day,while accompanied by energy and environment crisis issues.This paper mainly analyzes the...With the continuous deepening of China’s rural construction and development,people’s living conditions are improved day by day,while accompanied by energy and environment crisis issues.This paper mainly analyzes the energy consumption pattern and the indoor environment of rural households in China and discusses the energy-saving optimization strategies for improving the thermal environment of buildings.Questionnaire surveys and field surveys were conducted in three villages in Guanghan,China.The measurement results show that the annual indoor temperature range of the region in the summer is 15-31℃and the relative humidity range is 34%-96%.The average indoor temperatures in summer and winter are 28℃and 16℃respectively.The indoor thermal environment of rural buildings is usually poor and cannot meet the requirements of Chinese standards.At the same time,the architectural design and energy consumption pattern of rural households are different from those in urban areas as countryside has unique characteristics.Finally,we put forward certain energy-saving improvement measures at the end of the article.展开更多
With the improvement of living standards, peasants have attached increasing attention to quality of living environment, indoor thermal comfort of rural residence has become a functional need of new countryside residen...With the improvement of living standards, peasants have attached increasing attention to quality of living environment, indoor thermal comfort of rural residence has become a functional need of new countryside residence. Chengdu is a foggy area with shorter sunshine hours, humid air, more foggy but fewer windy days, so local residence is likely to be muggy, which influences comfort of residents seriously. According to relevant researches, most rural residences in Chengdu use only natural ventilation, and the indoor thermal comfort is poor. In view of this, this paper tried to improve indoor thermal comfort and quality of living environment from the perspective of residence functional design.展开更多
The transportation buildings alongside the expressways(TBE)have comprehensive characteristics,providing shopping and accommodations for drivers and passengers.However,the indoor thermal environment and energy consumpt...The transportation buildings alongside the expressways(TBE)have comprehensive characteristics,providing shopping and accommodations for drivers and passengers.However,the indoor thermal environment and energy consumption of such service buildings was not covered in most studies.To this end,based on some typical TBEs,this study investigated the thermal environment and energy consumption characteristics for TBEs.And the men-tioned TBEs are located in Xiong’an New Area,a national special zone with requirements of low carbon and low energy consumption in China’s cold region.The thermal environment study included questionnaire survey and on-site investigation by adopting dynamic thermal comfort evaluation index(i.e.,Relative Warmth Index(RWI)and Heat Deficit Rate(HDR)).Then,the TBE energy consumption was investigated with the main influencing factor analyses.Finally,numerical simulations were conducted to analyze the energy efficiency approaches in TBE.The results showed that RWI and HDR were able to evaluate the thermal comfort of personnel in transi-tional environment of TBE in winter.Meanwhile,when the room temperature was set as 16℃,it was still able to maintain the thermal environment for the indoor staff.The main energy influencing factors of TBEs are building scale,system equipment and usage characteristics.Besides,it was practicable to adopt the heat pump system to replace conventional space heating and cooling system,of which the total energy consumption of geothermal heat pump reduced by 38.1%.展开更多
Currently,climatic design conditions are usually selected according to the frequency of climatic parameters them-selves,which method cannot reflect the indoor thermal environment risk level of the building in design.I...Currently,climatic design conditions are usually selected according to the frequency of climatic parameters them-selves,which method cannot reflect the indoor thermal environment risk level of the building in design.In this regard,the research proposes to construct the correlation between climatic design conditions and indoor thermal environment risk level,and explore the effect of uncertainty in building thermal performance on this correlation from the perspective of probability,thus realizing the process of selecting the climatic design conditions based on the requirement for indoor thermal environment risk level.Taking Guangzhou in China as an example,the new process of determining climatic design conditions is realized.On this basis,the difference between the traditional method and the present research method is compared.In the Chinese norm method,the indoor thermal environ-ment risk level of the building is between 0 and 0.03%when the climatic design conditions are selected with 0.57%cumulative frequency of occurrence;in the research method,the indoor thermal environment risk level of the building is between 0.2%and 0.6%when the climatic design conditions are selected with 0.57%indoor thermal environment risk level and 100%confidence level.The results indicate that the research method can meet the designer’s expectation for indoor thermal environment risk level in design more directly and accurately.展开更多
基金The National Natural Science Foundation of China(No.50478113)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(No.J50502)
文摘The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewall air supply.The experimental results show that the indoor vertical temperature distributions under different condition are similar.The maximum vertical temperature difference(MVTD)is up to about 20 ℃,and it linearly changes with the sol-air temperature.The indoor vertical temperature gradients(VTGs)in the upper,central and lower zones are different.The influence of the sol-air temperature on the VTGs in the upper and the lower zones is greater than that in the central zone.The characteristics of the VTGs in the three zones affected by the air supply volume are the same as those affected by the sol-air temperature.Besides,because of the small air velocity,the predicted mean vote(PMV)on comfort in the occupied zone is slightly high and the air temperature difference between the head and the ankle is usually more than 3 ℃.
基金Project(2011BAJ03B13) supported by the National Key Technologies R&D Program of China
文摘The method for calculating wall surface heat storage coefficient was introduced,and the coefficients of several common walls with light-weight external thermal insulation materials and the traditional solid clay brick wall were calculated.In order to study the impact of light-weight external thermal insulation materials,a contrasting experiment was carried out between an external insulated room and an uninsulated room in August,2010,in Chongqing,China.The result shows that outside surface heat storage coefficient of the insulated wall is much less than that of the traditional wall.However,during sunny time,the surface temperature of external walls of the insulated room is obviously higher than that of the uninsulated room.In different orientations,due to different amounts of solar radiation and being irradiated in different time,the contrasting temperature difference(CTD) appears different regularity.In a word,using light-weight external thermal insulation materials has a negative impact on building surrounding thermal environment and people's health.Finally,some suggestions on how to eliminate the impact,such as improving the surface condition of the building envelop,and plating vertical greening,are put forward.
文摘By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different heating ways,to provide references for choosing a suitable heating way in the local area.
文摘In this study, the indoor environmental quality (IEQ) in air conditioned residential buildings in a dry desert climate is examined from the perspective of occupants via two aspects: thermal comfort and indoor air quality. The study presents statistical data about the domestic-occupant thermal comfort sensations together with data describing the indoor air quality in Kuwaiti residential buildings. With respect to the latter, the overall IEQ acceptance using two measurements namely: physical measurements and subjective information collected via questionnaires, was used to evaluate 111 occupants living in twenty five air-conditioned residential buildings in the state of Kuwait. The operative temperature based on Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) was identified using linear regression analysis of responses on the ASHRAE seven-point thermal sensation scale and was found to be 25.2°C and 23.3°C, respectively, in the summer season. Indoor air quality (IAQ) with respect to carbon dioxide concentration level was compared with the acceptable limits of international standards, i.e. ASHRAE Standard 62.1 [1]. The proposed overall IEQ acceptance findings in residential buildings show CO2 concentration level between 909 and 1250 ppm. However, this may be considered a higher level of CO2 concentration, which may require increasing ventilation rate through window operation or mechanical ventilation.
文摘Indoor Environmental Quality (IEQ) deals with providing a healthy and comfortable indoor environment. Most of international sustainability rating systems consider IEQ as a key perspective for developing sustainable buildings. Educational buildings include large number of people which increase the need to provide appropriate IEQ. Accordingly, there is a critical need to frequently assess of IEQ in this type of buildings in order to maintain the satisfactory level of IEQ. This paper aims to develop a framework for assessing and improving the IEQ of educational buildings in Saudi Arabia through measuring the IEQ parameters and integrating these results with Building Information Modeling (BIM). The key IEQ parameters considered in this study include thermal comfort, indoor air quality and visual comfort. These parameters have been measured by comfort-sense system, indoor air quality meter and light meter respectively. The measured data are integrated with BIM model in order to track the IEQ problems, and to develop IEQ history over time. By using the proposed framework, the IEQ can be tracked and improved. The IEQ assessment framework has been implemented on educational building in Saudi Arabia as a case study to validate the process and perform the necessary modifications and improvements.
文摘Good learning outputs in schools require an acceptable physical environment inside schools. Whatever the climatic context that surrounds any school buildings, energy flows of different types should be provided. Concerns may include thermal environment, luminous environment and acoustics environment. Types of energy used are an important variable that contributes to thermal comfort. Physical structure of the school building is another factor to be taken into consideration. This article established a relationship between thermal comfort inside schools and types of energy flows which have been consumed to maintain the level of comfort required, controlled by the building fabric and consequent economic factors that affect energy consumption of school buildings. Different approaches were applied in order to achieve the research objectives. Field surveys, field measurements and analyzing historical data were the most approaches followed to implement this study. The final outputs of this work have a national value nationwide: establishing a relationship among thermal comfort, energy flows and building fabric is of importance. Furthermore, it is of great importance to the decision maker for educational facilities. Research will also establish a wide platform based on scientific investigations for developing climate responsive school architecture in Jordan.
文摘In light of China s Ninth Five-year Plan (1996-2000) for Electric Power Industry & the Long Term Targets by the Year 2010, the paper considers the strategy for developing China’s thermal power in the 21st century shall be the efficiency and cleaning technology of coal use. Especially important is the structure of power sources and configuration of technology process, and secondly the implementation of energy saving and environmental protection ideology in the various stages of thermal power construction and design work.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProject(2006BAJ01A05) supported by the National Key Technologies R&D Program of ChinaProject(CSTC,2008AB7110) supported by Key Technologies R & D Program of Chongqing City,China
文摘The current ventilation condition of the hot and humid regions was analyzed through on-site investigation. It is found that residents in this region expect to improve indoor thermal environment through natural ventilation as much as possible. Then,it comes to a conclusion by the field test that natural ventilation has certain practical effect on improving indoor thermal environment. CFD simulation software is employed to verify the test result. Based on PMV modified model,and according to norms,geography and climate combined with the measured and simulated results,the application of the time and effectiveness of natural ventilation in hot and humid region were analyzed,to some extent,providing a basis for reducing the air-conditioner's runtime with natural ventilation.
基金supported by the China National Key R&D Program(Grant No.2018YFC0704400)Technology Achievements Transfor-mation Fund Project from Sichuan Science and Technology Department(#2018YSZH0010).
文摘With the continuous deepening of China’s rural construction and development,people’s living conditions are improved day by day,while accompanied by energy and environment crisis issues.This paper mainly analyzes the energy consumption pattern and the indoor environment of rural households in China and discusses the energy-saving optimization strategies for improving the thermal environment of buildings.Questionnaire surveys and field surveys were conducted in three villages in Guanghan,China.The measurement results show that the annual indoor temperature range of the region in the summer is 15-31℃and the relative humidity range is 34%-96%.The average indoor temperatures in summer and winter are 28℃and 16℃respectively.The indoor thermal environment of rural buildings is usually poor and cannot meet the requirements of Chinese standards.At the same time,the architectural design and energy consumption pattern of rural households are different from those in urban areas as countryside has unique characteristics.Finally,we put forward certain energy-saving improvement measures at the end of the article.
基金Sponsored by National Natural Science Foundation of China(51278421)
文摘With the improvement of living standards, peasants have attached increasing attention to quality of living environment, indoor thermal comfort of rural residence has become a functional need of new countryside residence. Chengdu is a foggy area with shorter sunshine hours, humid air, more foggy but fewer windy days, so local residence is likely to be muggy, which influences comfort of residents seriously. According to relevant researches, most rural residences in Chengdu use only natural ventilation, and the indoor thermal comfort is poor. In view of this, this paper tried to improve indoor thermal comfort and quality of living environment from the perspective of residence functional design.
基金supported by National Natural Science Foundation of China(Project No.51978231)Natural Science Foundation of Hebei Province(Project No.E2017202136)+1 种基金Hebei Province Funding Project for Returned Scholars,China(Project No.C20190507)Research and Development Project of MOHURD,China(Project No.2018-K11-001).
文摘The transportation buildings alongside the expressways(TBE)have comprehensive characteristics,providing shopping and accommodations for drivers and passengers.However,the indoor thermal environment and energy consumption of such service buildings was not covered in most studies.To this end,based on some typical TBEs,this study investigated the thermal environment and energy consumption characteristics for TBEs.And the men-tioned TBEs are located in Xiong’an New Area,a national special zone with requirements of low carbon and low energy consumption in China’s cold region.The thermal environment study included questionnaire survey and on-site investigation by adopting dynamic thermal comfort evaluation index(i.e.,Relative Warmth Index(RWI)and Heat Deficit Rate(HDR)).Then,the TBE energy consumption was investigated with the main influencing factor analyses.Finally,numerical simulations were conducted to analyze the energy efficiency approaches in TBE.The results showed that RWI and HDR were able to evaluate the thermal comfort of personnel in transi-tional environment of TBE in winter.Meanwhile,when the room temperature was set as 16℃,it was still able to maintain the thermal environment for the indoor staff.The main energy influencing factors of TBEs are building scale,system equipment and usage characteristics.Besides,it was practicable to adopt the heat pump system to replace conventional space heating and cooling system,of which the total energy consumption of geothermal heat pump reduced by 38.1%.
基金supported financially by the National Natural Science Foundation of China(Grant No.51978449)was conducted based on the results of“the 13th Five Year”National Science and Technology Ma-jor Project of China(Grant No.2018YFC0704500)National Natural Science Foundation of China(Grant No.51378336).
文摘Currently,climatic design conditions are usually selected according to the frequency of climatic parameters them-selves,which method cannot reflect the indoor thermal environment risk level of the building in design.In this regard,the research proposes to construct the correlation between climatic design conditions and indoor thermal environment risk level,and explore the effect of uncertainty in building thermal performance on this correlation from the perspective of probability,thus realizing the process of selecting the climatic design conditions based on the requirement for indoor thermal environment risk level.Taking Guangzhou in China as an example,the new process of determining climatic design conditions is realized.On this basis,the difference between the traditional method and the present research method is compared.In the Chinese norm method,the indoor thermal environ-ment risk level of the building is between 0 and 0.03%when the climatic design conditions are selected with 0.57%cumulative frequency of occurrence;in the research method,the indoor thermal environment risk level of the building is between 0.2%and 0.6%when the climatic design conditions are selected with 0.57%indoor thermal environment risk level and 100%confidence level.The results indicate that the research method can meet the designer’s expectation for indoor thermal environment risk level in design more directly and accurately.