期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na^(+) insertion/extraction for full sodium ion battery 被引量:5
1
作者 Jianguo Sun Hualin Ye +6 位作者 Jin An Sam Oh Yao Sun Anna Plewa Yumei Wang Tian Wu Kaiyang Zeng Li Lu 《Nano Research》 SCIE EI CSCD 2022年第3期2123-2129,共7页
Generation of large strains upon Na^(+) intercalation is one of the prime concerns of the mechanical degradation of Prussian blue(PB)and its analogs.Structural construction from the atomic level is imperative to maint... Generation of large strains upon Na^(+) intercalation is one of the prime concerns of the mechanical degradation of Prussian blue(PB)and its analogs.Structural construction from the atomic level is imperative to maintain structural stability and ameliorate the long-term stability of PB.Herein,an inter nickel hexacyanoferrate(NNiFCN)is successfully introduced at the out layer of iron hexacyanoferrate(NFFCN)through ion exchange to improve structural stability through compressive stress locking by forming NNiFCN shell.Furthermore,the kinetics of sodium ion diffusion is enhanced through the built-in electric pathway.The electrochemical performance is therefore significantly improved with a remarkable long-term cycling stability over 3,000 cycles at 500 mA·g^(–1) in the full sodium-ion batteries(SIBs)with a maximum energy density of 91.94 Wh·g^(–1),indicating that the core-shell structured NNiFCN/NFFCN could be the low-cost and high-performance cathode for full SIBs in large-scale EES applications. 展开更多
关键词 mechanical degradation core-shell structure Prussian blue full sodium-ion battery built-in electric field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部