期刊文献+
共找到64,356篇文章
< 1 2 250 >
每页显示 20 50 100
面向RISC-V适配开发的x86 built-in函数转换方法
1
作者 丁志远 朱家鑫 +1 位作者 吴国全 王伟 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第3期620-636,共17页
新兴架构RISC-V的生态建设需要将其他架构函数或软件包向RISC-V架构迁移适配。在研究GCC特定架构适配的built-in函数向RISC-V架构迁移时,提出一套x86到RISC-V的built-in函数转换方法,对于非扩展指令集(属非向量类型)built-in函数,采用RI... 新兴架构RISC-V的生态建设需要将其他架构函数或软件包向RISC-V架构迁移适配。在研究GCC特定架构适配的built-in函数向RISC-V架构迁移时,提出一套x86到RISC-V的built-in函数转换方法,对于非扩展指令集(属非向量类型)built-in函数,采用RISC-V架构下相同功能的built-in或标准库函数替代;对于SSE扩展指令集built-in函数,建立数据类型映射和向量函数操作映射实现向RISC-V架构向量扩展函数或标准库函数的迁移,其中RVV函数迁移方式占比67%。实验结果表明:方法迁移的程序功能正确,方法有效。本文方法对其他扩展指令集built-in函数的迁移提供了指导,且与现有工作相比,更易扩展、覆盖面更广。 展开更多
关键词 函数迁移 built-in函数 指令扩展集 RISC-V迁移
下载PDF
Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo-MXene/Mo-Metal Sulfides for Electromagnetic Response 被引量:4
2
作者 Xiaojun Zeng Xiao Jiang +2 位作者 Ya Ning Yanfeng Gao Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期453-473,共21页
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost... The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. 展开更多
关键词 Semiconductor-semiconductor-metal heterostructure Semiconductor junctions Mott-Schottky junctions built-in electric field Electromagnetic wave absorption
下载PDF
Experimental,Numerical,and Analytical Studies on the Bending of Mechanically Lined Pipe 被引量:1
3
作者 WEI Wen-bin YUAN Lin +1 位作者 ZHOU Jia-sheng LIU Zheng 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期221-232,共12页
Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau... Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results. 展开更多
关键词 lined pipe BENDING nonlinear ring theory BUCKLING PLASTICITY
下载PDF
Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test 被引量:1
4
作者 Wu Houli Guo Endong +2 位作者 Wang Jingyi Dai Xin Dai Chenxi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期163-178,共16页
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal... As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes. 展开更多
关键词 water supply pipe different materials shaking table test amplification factor seismic fragility
下载PDF
A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes(RTPs)Under External Pressure Considering Progressive Failure 被引量:1
5
作者 DING Xin-dong WANG Shu-qing +1 位作者 LIU Wen-cheng YE Xiao-han 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期233-246,共14页
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ... The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed. 展开更多
关键词 reinforced thermoplastic pipes post-buckling behavior progressive failure of composites DEBONDING initial ovality
下载PDF
Flow Patterns and Heat Transfer Characteristics of a Polymer Pulsating Heat Pipe Filled with Hydrofluoroether 被引量:1
6
作者 Nobuhito Nagasato Zhengyuan Pei Yasushi Koito 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期49-63,共15页
Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the enti... Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid. 展开更多
关键词 Polymer heat pipe VISUALIZATION oscillatory flow circulation flow thermal management 3D printer
下载PDF
A unified fractional flow framework for predicting the liquid holdup in two-phase pipe flows
7
作者 Fuqiao Bai Yingda Lu Mukul M.Sharma 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2614-2624,共11页
Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper w... Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper we apply the fractional flow theory to multiphase flow in pipes and present a unified modeling framework for predicting the fluid phase volume fractions over a broad range of pipe flow conditions.Compared to existing methods and correlations,this new framework provides a simple,approximate,and efficient way to estimate the phase volume fraction in two-phase pipe flow without invoking flow patterns.Notably,existing correlations for estimating phase volume fraction can be transformed and expressed under this modeling framework.Different fractional flow models are applicable to different flow conditions,and they demonstrate good agreement against experimental data within 5%errors when compared with an experimental database comprising of 2754 data groups from 14literature sources,covering various pipe geometries,flow patterns,fluid properties and flow inclinations.The gas void fraction predicted by the framework developed in this work can be used as inputs to reliably model the hydraulic and thermal behaviors of two-phase pipe flows. 展开更多
关键词 pipe fractional flow Liquid holdup Multiphase pipe flow Gas void fraction
下载PDF
Modulating charge separation and transfer for high-performance photoelectrodes via built-in electric field
8
作者 Houyan Cheng Peng Liu +3 位作者 Yuntao Cui Ru Ya Yuxiang Hu Jinshu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1126-1146,共21页
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t... Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided. 展开更多
关键词 photoelectrochemical water splitting bulk built-in electric field cation intercalation charge separation and transfer
下载PDF
Application of Ice Pigging in a Drinking Water Distribution System:Impacts on Pipes and Bulk Water Quality
9
作者 Yujing Huang Zhiwei Chen +4 位作者 Guilin He Yu Shao Shuang Song Feilong Dong Tuqiao Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第9期122-130,共9页
Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This stud... Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems.However,substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality.This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks.Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality.The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes.The bacterial richness and diversity of bulk water decreased significantly after ice pigging.Furthermore,correlations were established between pipe service age,temperature,and chloride and total iron concentrations,and the 15 most abundant taxa in bulk water,which could be used to guide practical ice pigging operations. 展开更多
关键词 Ice pigging pipe cleaning Drinking water distribution system Bacterial community SEDIMENTS
下载PDF
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
10
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
下载PDF
Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes
11
作者 Donghai HAN Qi JIA +4 位作者 Yuanyu GAO Qiduo JIN Xin FANG Jihong WEN Dianlong YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1821-1840,共20页
To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design me... To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design method is proposed for the longitudinal and transverse wave control of fluid-conveying pipes,and a novel periodic structure unit model is constructed for vibration reduction.Based on the bandgap vibration reduction mechanism of the acoustic metamaterial periodic structure,the material parameters,structural parameters,and the arrangement interval of the periodic structure unit are optimized.The finite element method(FEM)is used to predict the vibration transmission characteristics of the fluid-conveying pipe installed with the vibration reduction periodic structure.Then,the wave/spectrum element method(WSEM)and experimental test are used to verify the calculated results above.Lastly,the vibration attenuation characteristics of the structure under different conditions,such as rubber material parameters,mass ring material,and fluid-structure coupling effect,are analyzed.The results show that the structure can produce a complete bandgap of 46 Hz-75 Hz in the low-frequency band below 100 Hz,which can effectively suppress the low broadband vibration of the fluidconveying pipe.In addition,a high damping rubber material is used in the design of the periodic structure unit,which realizes the effective suppression of each formant peak of the pipe,and improves the vibration reduction effect of the fluid-conveying pipe.Meanwhile,the structure has the effect of suppressing both bending vibration and longitudinal vibration,and effectively inhibits the transmission of transverse waves and longitudinal waves in the pipe.The research results provide a reference for the application of acoustic metamaterials in the multi-directional vibration control of fluid-conveying pipes. 展开更多
关键词 fluid-conveying pipe acoustic metamaterial multi-directional vibration reduction local resonance
下载PDF
Enabling built-in electric fields on rhenium-vacancy-rich heterojunction interfaces of transition-metal dichalcogenides for pH-universal efficient hydrogen and electric energy generation
12
作者 Benzhi Wang Lixia Wang +3 位作者 Ji Hoon Lee Tayirjan Taylor Isimjan Hyung Mo Jeong Xiulin Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期195-209,共15页
Most advanced hydrogen evolution reaction(HER)catalysts show high activity under alkaline conditions.However,the performance deteriorates at a natural and acidic pH,which is often problematic in practical applications... Most advanced hydrogen evolution reaction(HER)catalysts show high activity under alkaline conditions.However,the performance deteriorates at a natural and acidic pH,which is often problematic in practical applications.Herein,a rhenium(Re)sulfide–transition-metal dichalcogenide heterojunc-tion catalyst with Re-rich vacancies(NiS_(2)-ReS_(2)-V)has been constructed.The optimized catalyst shows extraordinary electrocatalytic HER performance over a wide range of pH,with ultralow overpotentials of 42,85,and 122 mV under alkaline,acidic,and neutral conditions,respectively.Moreover,the two-electrode system with NiS_(2)-ReS_(2)-V1 as the cathode provides a voltage of 1.73 V at 500 mA cm^(-2),superior to industrial systems.Besides,the open-circuit voltage of a single Zn–H_(2)O cell with NiS_(2)-ReS_(2)-V1 as the cathode can reach an impressive 90.9% of the theoretical value,with a maximum power density of up to 31.6 mW cm^(-2).Moreover,it shows remarkable stability,with sustained discharge for approximately 120 h at 10 mA cm^(-2),significantly outperforming commercial Pt/C catalysts under the same conditions in all aspects.A series of systematic characterizations and theoretical calculations demonstrate that Re vacancies on the heterojunction interface would generate a stronger built-in electric field,which profoundly affects surface charge distribution and subsequently enhances HER performance. 展开更多
关键词 built-in electric field ELECTROCATALYSTS hydrogen evolution reaction self-powered system water splitting Zn-H_(2)O cell
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
13
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 Li-S battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure built-in electric field
下载PDF
A Composite Transformer-Based Multi-Stage Defect Detection Architecture for Sewer Pipes
14
作者 Zifeng Yu Xianfeng Li +2 位作者 Lianpeng Sun Jinjun Zhu Jianxin Lin 《Computers, Materials & Continua》 SCIE EI 2024年第1期435-451,共17页
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ... Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities. 展开更多
关键词 Sewer pipe defect detection deep learning model optimization composite transformer
下载PDF
Parametric resonance of axially functionally graded pipes conveying pulsating fluid
15
作者 Jie JING Xiaoye MAO +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期239-260,共22页
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio... Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid. 展开更多
关键词 pipe conveying fluid axially functionally graded supercritical resonance multi-scale method parametric resonance
下载PDF
Experimental Analyses of Flow Pattern and Heat Transfer in a Horizontally Oriented Polymer Pulsating Heat Pipe withMerged Liquid Slugs
16
作者 Zhengyuan Pei Yasushi Koito 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1381-1397,共17页
Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels wi... Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range. 展开更多
关键词 Pulsating heat pipe polymer heat pipe visualization experiment flow pattern analysis heat transfer enhancement
下载PDF
Bimetallic selenide heterostructure with directional built-in electricfield confined in N-doped carbon nanofibers for superior sodium storage with ultralong lifespan
17
作者 Junying Weng Degui Zou +5 位作者 Wenyong Yuan Pengfei Zhou Minghui Ding Jin Zhou Hailin Cong Fangyi Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期407-416,共10页
Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and u... Constructing heterostructure is considered as an effective strategy to address the sluggish electronic and ionic kinetics of anode materials for sodium ion batteries(SIBs).However,realizing the orientated growth and uniform distribution of the heterostructure is still a great challenge.Herein,the regulated novel CoSe_(2)/NiSe_(2)heterostructure confined in N-doped carbon nanofibers(CoSe_(2)/NiSe_(2)@N-C)are prepared by using Co/Ni-ZIF template,in which,the CoSe_(2)/NiSe_(2)heterostructures realize uniform distribution on a micro level.Benefiting from the unique heterostructure and N-doped carbon nanofibers,the CoSe_(2)/NiSe_(2)@N-C deliveries superior rate capability and durable cycle lifespan with a reversible capacity of 400.5 mA h g^(-1)after 5000 cycles at 2 A g^(-1).The Na-ion full battery with CoSe_(2)/NiSe_(2)@N-C anode and layered oxide cathode displays a remarkable energy density of 563 W h kg^(-1)with 241.1 W kg^(-1)at 0.1 A g^(-1).The theoretical calculations disclose that the periodic and directional built-in electric-field along with the heterointerfaces of CoSe_(2)/NiSe_(2)@N-C can accelerate electrochemical reaction kinetics.The in(ex)situ experimental measurements reveal the reversible conversion reaction and stable structure of CoSe_(2)/NiSe_(2)@N-C during Na+insertion/extraction.The study highlights the potential ability of precisely controlled heterostructure to stimulate the electrochemical performances of advanced anode for SIBs. 展开更多
关键词 CoSe_(2)/NiSe_(2) heterostructure built-in electric-field Rate capability Ultralong lifespan Sodium ion batteries
下载PDF
Detection of internal crack growth in polyethylene pipe using guided wave ultrasonic testing
18
作者 Jay Kumar Shah Hao Wang Said El-Hawwat 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期319-329,共11页
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve... Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth. 展开更多
关键词 polyethylene pipes internal cracks guided wave ultrasonic testing torsional modes finite element modeling
下载PDF
Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study
19
作者 Farman Saifi Mohd Javaid +1 位作者 Abid Haleem S.M.Anas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2747-2777,共31页
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac... Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events. 展开更多
关键词 Blast loading computational fluid dynamics computer modeling pipe networks response prediction structural safety
下载PDF
Predicting impact forces on pipelines from deep-sea fluidized slides:A comprehensive review of key factors
20
作者 Xingsen Guo Ning Fan +5 位作者 Defeng Zheng Cuiwei Fu Hao Wu Yanjun Zhang Xiaolong Song Tingkai Nian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期211-225,共15页
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ... Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures. 展开更多
关键词 Deep-sea fluidized slides pipes Impact forces Shear behavior of slides Interface contact conditions Spatial relation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部