By heating up the embedded carbon fiber reinforced cement based material (CFRC), the carrying capacity and deformation of concrete member could be adjusted. The relationship between temperature difference and expans...By heating up the embedded carbon fiber reinforced cement based material (CFRC), the carrying capacity and deformation of concrete member could be adjusted. The relationship between temperature difference and expansion strain of CFRC was demonstrated, and the temperature-deformation-load effect of concrete embedded with CFRC was studied. Heating the CFRC up to different temperatures resulted in different degree of inner pre-stress in concrete. Thus, the load capacity of concrete could be regulated owing to counteracting the pre-stress.展开更多
Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the v...Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.展开更多
Constructional and micro-dynamic process of the water-transferring composite was analyzed. This composite can transmit water to soil with a self-adjustable speed to ensure the survival of seedlings in arid and semi-ar...Constructional and micro-dynamic process of the water-transferring composite was analyzed. This composite can transmit water to soil with a self-adjustable speed to ensure the survival of seedlings in arid and semi-arid regions when it is embedded in soil around the roots of the seedlings. It is obtained from natural plant fiber coated with a colloid made by mixing a certain proportion of polyacrylamide and montmorillonite. The rules of water being transmitted to soil by the coating under different condition were tested by M-30 quick moisture measure instrument. The process of water-desorption of the coating material was investigated by a Perkin Elmer Diamond S Ⅱ thermal multi-analyzer. Moreover, the micro-dynamic behavior was detected by a FEIQuanta 2000 environment scanning electron microscope. The results demonstrate that montmorillonite has lower water-desorption energy barrier than polyacrylamide and can lose water more easily. montmorillonite particles bridge up to be the main water-transmit material at low water potential (when the soil relatively dry or when the temperature is high), and they break bridge at high water potential while the polyacrylamide acts as the main water-transmit material.展开更多
Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algor...Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algorithm adapting to different under-water acoustic channel environments is proposed by changing its central tap position. Besides, this new algorithm behaves faster convergence speed based on the analysis of equalizers’ working rules, which is more suitable to implement communications in dif-ferent unknown channels. Corresponding results and conclusions are validated by simulations and spot experiments.展开更多
Short-term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems.The aim of this paper is to provide a model based on neural networks(NNs)for multi-step-ahead traffi...Short-term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems.The aim of this paper is to provide a model based on neural networks(NNs)for multi-step-ahead traffic prediction.NNs'dependency on parameter setting is the major challenge in using them as a predictor.Given the fact that the best combination of NN parameters results in the minimum error of predicted output,the main problem is NN optimization.So,it is viable to set the best combination of the parameters according to a specific traffic behavior.On the other hand,an automatic method—which is applicable in general cases—is strongly desired to set appropriate parameters for neural networks.This paper defines a self-adjusted NN using the non-dominated sorting genetic algorithm II(NSGA-II)as a multi-objective optimizer for short-term prediction.NSGA-II is used to optimize the number of neurons in the first and second layers of the NN,learning ratio and slope of the activation function.This model addresses the challenge of optimizing a multi-output NN in a self-adjusted way.Performance of the developed network is evaluated by application to both univariate and multivariate traffic flow data from an urban highway.Results are analyzed based on the performance measures,showing that the genetic algorithm tunes the NN as well without any manually pre-adjustment.The achieved prediction accuracy is calculated with multiple measures such as the root mean square error(RMSE),and the RMSE value is 10 and 12 in the best configuration of the proposed model for single and multi-step-ahead traffic flow prediction,respectively.展开更多
Pulsed MIG welding is suitable for aluminum alloys welding, because spray transfer and excellent profile can be arrived during whole welding current range, and the energy of droplet can be controlled to overcome losin...Pulsed MIG welding is suitable for aluminum alloys welding, because spray transfer and excellent profile can be arrived during whole welding current range, and the energy of droplet can be controlled to overcome losing of alloy elements with lower melting and steam point by controlling pulse current and pulse time. Because of the special physic properties of aluminum alloys, there are different requirements for pulsed MIG welding between starting arc short circuit and drop transfer short circuit, pulse period and base period. In order to satisfy the need of aluminum alloys MIG welding, self adjusting dynamic characteristics are designed to output different dynamic characteristics in different welding startes. The self adjusting dynamic characteristics of pulsed MIG welding are achieved through a short circuit controller and a dynamic electronic inductor. The welding machine(AL MIG 350) with self adjusting dynamic characteristics has a high rate of successfully starting arc up to 96%, and the short circuit time during transfer is less than 1 ms, in the mean time, the arc is stiffness, spatter is low and weld appearance is good.展开更多
Due to the complexity of thickness and shape synthetical adjustment system and the difficulties to build a mathematical model,a thickness and shape synthetical adjustment scheme on DC mill based on dynamic nerve-fuzzy...Due to the complexity of thickness and shape synthetical adjustment system and the difficulties to build a mathematical model,a thickness and shape synthetical adjustment scheme on DC mill based on dynamic nerve-fuzzy control was put forward,and a self-organizing fuzzy control model was established.The structure of the network can be optimized dynamically.In the course of studying,the network can automatically adjust its structure based on the specific questions and make its structure the optimal.The input and output of the network are fuzzy sets,and the trained network can complete the composite relation,the fuzzy inference.For decreasing the off-line training time of BP network,the fuzzy sets are encoded.The simulation results indicate that the self-organizing fuzzy control based on dynamic neural network is better than traditional decoupling PID control.展开更多
基金the National Natural Science Foundation of China (No. 50238040).
文摘By heating up the embedded carbon fiber reinforced cement based material (CFRC), the carrying capacity and deformation of concrete member could be adjusted. The relationship between temperature difference and expansion strain of CFRC was demonstrated, and the temperature-deformation-load effect of concrete embedded with CFRC was studied. Heating the CFRC up to different temperatures resulted in different degree of inner pre-stress in concrete. Thus, the load capacity of concrete could be regulated owing to counteracting the pre-stress.
文摘Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.
基金Funded by the National Natural Science Foundation of China (50772131)the National Hi-Tech Research and Development Program of China (2001AA322100)
文摘Constructional and micro-dynamic process of the water-transferring composite was analyzed. This composite can transmit water to soil with a self-adjustable speed to ensure the survival of seedlings in arid and semi-arid regions when it is embedded in soil around the roots of the seedlings. It is obtained from natural plant fiber coated with a colloid made by mixing a certain proportion of polyacrylamide and montmorillonite. The rules of water being transmitted to soil by the coating under different condition were tested by M-30 quick moisture measure instrument. The process of water-desorption of the coating material was investigated by a Perkin Elmer Diamond S Ⅱ thermal multi-analyzer. Moreover, the micro-dynamic behavior was detected by a FEIQuanta 2000 environment scanning electron microscope. The results demonstrate that montmorillonite has lower water-desorption energy barrier than polyacrylamide and can lose water more easily. montmorillonite particles bridge up to be the main water-transmit material at low water potential (when the soil relatively dry or when the temperature is high), and they break bridge at high water potential while the polyacrylamide acts as the main water-transmit material.
基金supported by the National Natural Science Foundation of China(61101205)the Natural Science Foundation of Hubei Province of China(2009CDB337)the Natural Science Foundation of Naval University of Engineering(HGDQNJJ13019)
文摘Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algorithm adapting to different under-water acoustic channel environments is proposed by changing its central tap position. Besides, this new algorithm behaves faster convergence speed based on the analysis of equalizers’ working rules, which is more suitable to implement communications in dif-ferent unknown channels. Corresponding results and conclusions are validated by simulations and spot experiments.
文摘Short-term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems.The aim of this paper is to provide a model based on neural networks(NNs)for multi-step-ahead traffic prediction.NNs'dependency on parameter setting is the major challenge in using them as a predictor.Given the fact that the best combination of NN parameters results in the minimum error of predicted output,the main problem is NN optimization.So,it is viable to set the best combination of the parameters according to a specific traffic behavior.On the other hand,an automatic method—which is applicable in general cases—is strongly desired to set appropriate parameters for neural networks.This paper defines a self-adjusted NN using the non-dominated sorting genetic algorithm II(NSGA-II)as a multi-objective optimizer for short-term prediction.NSGA-II is used to optimize the number of neurons in the first and second layers of the NN,learning ratio and slope of the activation function.This model addresses the challenge of optimizing a multi-output NN in a self-adjusted way.Performance of the developed network is evaluated by application to both univariate and multivariate traffic flow data from an urban highway.Results are analyzed based on the performance measures,showing that the genetic algorithm tunes the NN as well without any manually pre-adjustment.The achieved prediction accuracy is calculated with multiple measures such as the root mean square error(RMSE),and the RMSE value is 10 and 12 in the best configuration of the proposed model for single and multi-step-ahead traffic flow prediction,respectively.
文摘Pulsed MIG welding is suitable for aluminum alloys welding, because spray transfer and excellent profile can be arrived during whole welding current range, and the energy of droplet can be controlled to overcome losing of alloy elements with lower melting and steam point by controlling pulse current and pulse time. Because of the special physic properties of aluminum alloys, there are different requirements for pulsed MIG welding between starting arc short circuit and drop transfer short circuit, pulse period and base period. In order to satisfy the need of aluminum alloys MIG welding, self adjusting dynamic characteristics are designed to output different dynamic characteristics in different welding startes. The self adjusting dynamic characteristics of pulsed MIG welding are achieved through a short circuit controller and a dynamic electronic inductor. The welding machine(AL MIG 350) with self adjusting dynamic characteristics has a high rate of successfully starting arc up to 96%, and the short circuit time during transfer is less than 1 ms, in the mean time, the arc is stiffness, spatter is low and weld appearance is good.
文摘Due to the complexity of thickness and shape synthetical adjustment system and the difficulties to build a mathematical model,a thickness and shape synthetical adjustment scheme on DC mill based on dynamic nerve-fuzzy control was put forward,and a self-organizing fuzzy control model was established.The structure of the network can be optimized dynamically.In the course of studying,the network can automatically adjust its structure based on the specific questions and make its structure the optimal.The input and output of the network are fuzzy sets,and the trained network can complete the composite relation,the fuzzy inference.For decreasing the off-line training time of BP network,the fuzzy sets are encoded.The simulation results indicate that the self-organizing fuzzy control based on dynamic neural network is better than traditional decoupling PID control.