Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d...Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.展开更多
We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density...We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density functional theory.The results show that there are band crossings in the Z-L(armchair)direction.展开更多
The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insight...The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.展开更多
Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the infe...Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.展开更多
Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) ...Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.展开更多
There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical pro...There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical properties.Idealized supercell simulations are produced using the WRF model coupled with“full”Hebrew University spectral bin MP(HU-SBM),and NSSL and Thompson bulk MP(BMP)schemes.HU-SBM downdrafts are typically weaker than those of the NSSL and Thompson simulations,accompanied by less rain evaporation.HU-SBM produces more cloud ice(plates),graupel,and hail than the BMPs,yet precipitates less at the surface.The limiting mass bins(and subsequently,particle size)of rimed ice in HU-SBM and slower rimed ice fall speeds lead to smaller melting-level net rimed ice fluxes than those of the BMPs.Aggregation from plates in HU-SBM,together with snow–graupel collisions,leads to a greater snow contribution to rain than those of the BMPs.Replacing HU-SBM’s fall speeds using the formulations of the BMPs after aggregating the discrete bin values to mass mixing ratios and total number concentrations increases net rain and rimed ice fluxes.Still,they are smaller in magnitude than bulk rain,NSSL hail,and Thompson graupel net fluxes near the surface.Conversely,the melting-layer net rimed ice fluxes are reduced when the fall speeds for the NSSL and Thompson simulations are calculated using HU-SBM fall speed formulations after discretizing the bulk particle size distributions(PSDs)into spectral bins.The results highlight precipitation sensitivity to storm dynamics,fall speed,hydrometeor evolution governed by process rates,and MP PSD design.展开更多
Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires ener...Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires energy-state matching between the donor and acceptor at the BHJ interfaces.Thus,both geometrically and energetically accessible delocalized state matching at the hot energy level is crucial for achieving efficient PICT.In this study,an effective method for quantifying the hot state matching of OPVs was developed.The degree of energy-state matching between the electron donor and acceptor at BHJ interfaces was quantified using a mismatching factor(MF)calculated from the modified optical density of the BHJ.Furthermore,the correlation between the open-circuit voltage(Voc)of the OPV device and energy-state matching at the BHJ interface was investigated using the calculated MF.The OPVs with small absolute MF values exhibited high Voc values.This result clearly indicates that the energy-state matching between the donor and acceptor is crucial for achieving a high Voc in OPVs.Because the MF indicates the degree of energy-state matching,which is a critical factor for suppressing energy loss,it can be used to estimate the Voc loss in OPVs.展开更多
Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite f...Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite films simultaneously,leading to the suppressed nonradiative recombination,longer lifetime,higher mobility,and reduced trap density.Consequently,the devices’performance is enhanced to 24.5%and 18.7%for 0.12 and 64 cm^(2),respectively.In addition,the MGM treatment can be applied to a wide range of perovskite compositions,including MA-,FA-,MAFA-,and CsFAMA-based lead halide perovskites,making it a general method for preparing efficient perovskite solar cells.Without encapsulation,the treated devices show improved stabilities.展开更多
Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,wh...Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,which is attributed to lower count of slip systems associated with the hcp crystal structure.To address these limitations,several new magnesium alloys and also many processing strategies have been developed and reported in the literature.ZE41 Mg is an alloy with significant quantities of zinc(Zn)and rare earth(RE)elements and has emerged as a promising material for aerospace,automotive,electronics,biomedical and many other industries.To make this alloy more competitive and viable,it should possess better mechanical and corrosion properties.Hence,the current paper reviews the effect of bulk mechanical processing on grain refinement,microstructural modification,and corresponding changes in the mechanical behaviour of ZE41Mg alloy.Further,the effect of various surface modification techniques on altering the surface microstructure and surface properties such as wear and corrosion are also briefly summarized and presented.This review also discusses the challenges and the future perspectives in developing high-performing ZE41 Mg alloys.展开更多
Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to eith...Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to either constructing nanostructure or intercalation pseudocapacitance with their intrinsic limitations.However,the fully bulk utilization of transition metal oxides is hindered by the poor understanding of atomic-level conversion reaction mechanism,particularly it is largely missing at clarifying how the phase transformation(conversion reaction)determines the electrochemical performance such as power density and cyclic stability.Herein,α-Fe_(2)O_(3) is a case provided to claim how the diffusional and diffusionless transformation determine the electrochemical behaviors,as of its conversion reaction mechanism with fully bulk utilization in alkaline electrolyte.Specifically,the discharge productα-FeOOH diffusional from Fe(OH)2 is structurally identified as the atomic-level arch criminal for its cyclic stability deterioration,whereas the counterpartδ-FeOOH is theoretically diffusionless-like,unlocking the full potential of the pseudocapacitance with fully bulk utilization.Thus,such pseudocapacitance,in proof-of-concept and termed as conversion pseudocapacitance,is achieved via diffusionless-like transformation.This work not only provides an atomic-level perspective to reassess the potential electrochemical performance of the transition metal oxides electrode materials based on conversion reaction mechanism but also debuts a new paradigm for pseudocapacitance.展开更多
Langevin dynamical simulations are performed to determine the bulk modulus in twodimensional(2D) dusty plasmas from uniform periodic radial compressions. The bulk modulus is calculated directly from its physical defin...Langevin dynamical simulations are performed to determine the bulk modulus in twodimensional(2D) dusty plasmas from uniform periodic radial compressions. The bulk modulus is calculated directly from its physical definition of the ratio of the internal pressure/stress to the volume strain. Under various conditions, the bulk moduli obtained agree with the previous theoretical derivations from completely different approaches. It is found that the bulk moduli of2D Yukawa solids and liquids are almost independent of the system temperature and the external compressional frequency.展开更多
Bulk heterojunction(BHJ)composites show improved power conversion efficiencies when optimized in terms of morphology using various film processing methods.A reduced carrier recombination loss in an optimized BHJ was c...Bulk heterojunction(BHJ)composites show improved power conversion efficiencies when optimized in terms of morphology using various film processing methods.A reduced carrier recombination loss in an optimized BHJ was characterized previously.However,the driving force that leads to this reduction was not clearly understood.In this study,we focus on the decreased carrier recombination loss and its driving force in optimized nonfullerene acceptor-based PTB7-Th:IEICO-4F BHJ composites.We demonstrate that the optimized BHJ shows deactivation in the sub-nanosecond nongeminate carrier recombination process.The driving force for this deactivation was determined to be the improved interchain hole delocalization between the polymers.An enhanced interchain hole delocalization was observed using steady-state photoinduced absorption(PIA)spectroscopy.In particular,increased splitting between the polaron PIA bands was noted.Moreover,improved interchain hole delocalization was observed for other state-of-the-art BHJ materials,including D18:Y6 with optimized morphologies.展开更多
To study the influence of thickness on the magnetic properties of ReBCO(Re = Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide(GdBCO) bulk superconductor fabricated by the Re + ...To study the influence of thickness on the magnetic properties of ReBCO(Re = Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide(GdBCO) bulk superconductor fabricated by the Re + 011 top seeded infiltration growth(Re + 011 TSIG) method was continuously sliced along the bottom to obtain samples of different thickness. The levitation force and attractive force of these samples were tested at 77 K in the zero-field-cooled(ZFC)state. It is found that as the sample thickness decreases, the levitation force decreases gradually whereas the attractive force increases. This is related to the varied ability to resist the penetration of magnetic field occasioned by varying sample thickness, which are deeply revealed by combining with the characteristics of the non-ideal type-II superconductor. Further,the levitation force exhibits a trend of slow initial change followed by rapid change, which may be attributed to the growth of the sample. Measurement of the trapped field shows that a similar distribution of trapped field at the top and bottom surfaces can be achieved by removing some materials from the bottom of the bulk. These results provide a reference for meeting the actual requirements of ReBCO bulks of different thicknesses and greatly contribute to practical designs and applications.展开更多
Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_...Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_(2)O_(4) coating and Mg,Fe co-doping were constructed simultaneously by Mg,Fe surface treatment to suppress lattice oxygen evolution and P2-O2 phase transformation of P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)at deep charging.Through ex-situ X-ray diffraction(XRD)tests,we found that the Mg,Fe bulk co-doping could reduce the repulsion between transition metals and Na+/vacancies ordering,thus inhibiting the P2-O2 phase transition and significantly reducing the irreversible volume change of the material.Meanwhile,the internal electric field formed by the dielectric polarization of Mg Fe_(2)O_(4) effectively inhibits the outward migration of oxidized O^(a-)(a<2),thereby suppressing the lattice oxygen evolution at deep charging,confirmed by in situ Raman and ex situ XPS techniques.P2-Na NM@MF-3 shows enhanced high-voltage cycling performance with capacity retentions of 84.8% and 81.3%at 0.1 and 1 C after cycles.This work sheds light on regulating the surface chemistry for Na-layered oxide materials to enhance the high-voltage performance of Na-ion batteries.展开更多
An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition w...An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.展开更多
文摘Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104216,12241403,and 61974061)the National Key R&D Program of China(Grant No.2021YFB3601600)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054)。
文摘We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus(BP)using angle-resolved photoemission spectroscopy and density functional theory.The results show that there are band crossings in the Z-L(armchair)direction.
基金The National Key Research and Development Program of China under contract No.2022YFE0136500the National Nature Science Foundation of China under contract Nos 41890801 and 42076227the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University under contract No.21TQ1400201.
文摘The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.
基金supported by the National Natural Science Foundation of China (52374299,52304320 and 52204306)the Outstanding Youth Foundation of Hunan Province (2023JJ10044)+1 种基金the Key Project of Hunan Provincial Department of Education (22A0211)the Natural Science Foundation of Hunan Province (2023JJ40014)。
文摘Introducing high-valence Ta element is an essential strategy for addressing the structu ral deterioration of the Ni-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM)cathode,but the enlarged Li/Ni cation mixing leads to the inferior rate capability originating from the hindered Li~+migration.Note that the non-magnetic Ti~(4+)ion can suppress Li/Ni disorder by removing the magnetic frustration in the transition metal layer.However,it is still challenging to directionally design expected Ta/Ti dual-modification,resulting from the complexity of the elemental distribution and the uncertainty of in-situ formed coating compounds by introducing foreign elements.Herein,a LiTaO_3 grain boundary(GB)coating and bulk Ti-doping have been successfully achieved in LiNi_(0.834)Co_(0.11)Mn_(0.056)O_(2) cathode by thermodynamic guidance,in which the structural formation energy and interfacial binding energy are employed to predict the elemental diffusion discrepancy and thermodynamically stable coating compounds.Thanks to the coupling effect of strengthened structural/interfacial stability and improved Li~+diffusion kinetics by simultaneous bulk/GB engineering,the Ta/Ti-NCM cathode exhibits outstanding capacity retention,reaching 91.1%after 400 cycles at 1 C.This elaborate work contributes valuable insights into rational dual-modification engineering from a thermodynamic perspective for maximizing the electrochemical performances of NCM cathodes.
基金supported by the Agricultural Research Development Agency of Thailand (Grant No.PRP6405030280)Research Promotion fund for International and Educational Excellence, Thailand (Grant No.08/2562)。
文摘Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.
基金This research was primarily supported by a NOAA Warn-on-Forecast(WoF)grant(Grant No.NA16OAR4320115).
文摘There are more uncertainties with ice hydrometeor representations and related processes than liquid hydrometeors within microphysics parameterization(MP)schemes because of their complicated geometries and physical properties.Idealized supercell simulations are produced using the WRF model coupled with“full”Hebrew University spectral bin MP(HU-SBM),and NSSL and Thompson bulk MP(BMP)schemes.HU-SBM downdrafts are typically weaker than those of the NSSL and Thompson simulations,accompanied by less rain evaporation.HU-SBM produces more cloud ice(plates),graupel,and hail than the BMPs,yet precipitates less at the surface.The limiting mass bins(and subsequently,particle size)of rimed ice in HU-SBM and slower rimed ice fall speeds lead to smaller melting-level net rimed ice fluxes than those of the BMPs.Aggregation from plates in HU-SBM,together with snow–graupel collisions,leads to a greater snow contribution to rain than those of the BMPs.Replacing HU-SBM’s fall speeds using the formulations of the BMPs after aggregating the discrete bin values to mass mixing ratios and total number concentrations increases net rain and rimed ice fluxes.Still,they are smaller in magnitude than bulk rain,NSSL hail,and Thompson graupel net fluxes near the surface.Conversely,the melting-layer net rimed ice fluxes are reduced when the fall speeds for the NSSL and Thompson simulations are calculated using HU-SBM fall speed formulations after discretizing the bulk particle size distributions(PSDs)into spectral bins.The results highlight precipitation sensitivity to storm dynamics,fall speed,hydrometeor evolution governed by process rates,and MP PSD design.
基金National Research Foundation of Korea,Grant/Award Number:2022R1A6A1A03051158BrainLink Program,Grant/Award Number:2022H1D3A3A01077343Nano Material Technology Development Program,Grant/Award Number:2021M3H4A1A02057007。
文摘Photoinduced intermolecular charge transfer(PICT)determines the voltage loss in bulk heterojunction(BHJ)organic photovoltaics(OPVs),and this voltage loss can be minimized by inducing efficient PICT,which requires energy-state matching between the donor and acceptor at the BHJ interfaces.Thus,both geometrically and energetically accessible delocalized state matching at the hot energy level is crucial for achieving efficient PICT.In this study,an effective method for quantifying the hot state matching of OPVs was developed.The degree of energy-state matching between the electron donor and acceptor at BHJ interfaces was quantified using a mismatching factor(MF)calculated from the modified optical density of the BHJ.Furthermore,the correlation between the open-circuit voltage(Voc)of the OPV device and energy-state matching at the BHJ interface was investigated using the calculated MF.The OPVs with small absolute MF values exhibited high Voc values.This result clearly indicates that the energy-state matching between the donor and acceptor is crucial for achieving a high Voc in OPVs.Because the MF indicates the degree of energy-state matching,which is a critical factor for suppressing energy loss,it can be used to estimate the Voc loss in OPVs.
基金supported by the National Key Research and Development Program of China(2021YFB3800103)the Fundamental Research Funds for the Central Universities(000-0903069032)the National Natural Science Foundation of China(52203237).
文摘Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite films simultaneously,leading to the suppressed nonradiative recombination,longer lifetime,higher mobility,and reduced trap density.Consequently,the devices’performance is enhanced to 24.5%and 18.7%for 0.12 and 64 cm^(2),respectively.In addition,the MGM treatment can be applied to a wide range of perovskite compositions,including MA-,FA-,MAFA-,and CsFAMA-based lead halide perovskites,making it a general method for preparing efficient perovskite solar cells.Without encapsulation,the treated devices show improved stabilities.
文摘Magnesium(Mg)alloys are generally used in light-weight structural applications due to their higher specific strength.However,the usage of these Mg alloys is limited due to their poor formability at room temperature,which is attributed to lower count of slip systems associated with the hcp crystal structure.To address these limitations,several new magnesium alloys and also many processing strategies have been developed and reported in the literature.ZE41 Mg is an alloy with significant quantities of zinc(Zn)and rare earth(RE)elements and has emerged as a promising material for aerospace,automotive,electronics,biomedical and many other industries.To make this alloy more competitive and viable,it should possess better mechanical and corrosion properties.Hence,the current paper reviews the effect of bulk mechanical processing on grain refinement,microstructural modification,and corresponding changes in the mechanical behaviour of ZE41Mg alloy.Further,the effect of various surface modification techniques on altering the surface microstructure and surface properties such as wear and corrosion are also briefly summarized and presented.This review also discusses the challenges and the future perspectives in developing high-performing ZE41 Mg alloys.
基金This research is supported by the National Natural Science Foundation of China (51932003,51872115)2020 International Cooperation Project of the Department of Science and Technology of Jilin Province (20200801001GH)+5 种基金Program for the Development of Science and Technology of Jilin Province (20190201309JC)the Jilin Province/Jilin University Co-Construction Project-Funds for New Materials (SXGJSF2017-3,Branch-2/440050316A36)Project for Self-innovation Capability Construction of Jilin Province Development and Reform Commission (2021C026)the Open Project Program of Wuhan National Laboratory for Optoelectronics (2018WNLOKF022)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT,2017TD-09)the Fundamental Research Funds for the Central Universities JLU,and“Double-First Class”Discipline for Materials Science&Engineering.
文摘Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to either constructing nanostructure or intercalation pseudocapacitance with their intrinsic limitations.However,the fully bulk utilization of transition metal oxides is hindered by the poor understanding of atomic-level conversion reaction mechanism,particularly it is largely missing at clarifying how the phase transformation(conversion reaction)determines the electrochemical performance such as power density and cyclic stability.Herein,α-Fe_(2)O_(3) is a case provided to claim how the diffusional and diffusionless transformation determine the electrochemical behaviors,as of its conversion reaction mechanism with fully bulk utilization in alkaline electrolyte.Specifically,the discharge productα-FeOOH diffusional from Fe(OH)2 is structurally identified as the atomic-level arch criminal for its cyclic stability deterioration,whereas the counterpartδ-FeOOH is theoretically diffusionless-like,unlocking the full potential of the pseudocapacitance with fully bulk utilization.Thus,such pseudocapacitance,in proof-of-concept and termed as conversion pseudocapacitance,is achieved via diffusionless-like transformation.This work not only provides an atomic-level perspective to reassess the potential electrochemical performance of the transition metal oxides electrode materials based on conversion reaction mechanism but also debuts a new paradigm for pseudocapacitance.
基金supported by National Natural Science Foundation of China(Nos.12175159 and 11875199)the 1000 Youth Talents Plan,startup funds from Soochow Universitythe Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘Langevin dynamical simulations are performed to determine the bulk modulus in twodimensional(2D) dusty plasmas from uniform periodic radial compressions. The bulk modulus is calculated directly from its physical definition of the ratio of the internal pressure/stress to the volume strain. Under various conditions, the bulk moduli obtained agree with the previous theoretical derivations from completely different approaches. It is found that the bulk moduli of2D Yukawa solids and liquids are almost independent of the system temperature and the external compressional frequency.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korea government(MSIT)(2022R1F1A1065586,2019R1A6A1A11053838)the GIST Research Institute(GRI)APRI grant funded by the GIST in 2022.
文摘Bulk heterojunction(BHJ)composites show improved power conversion efficiencies when optimized in terms of morphology using various film processing methods.A reduced carrier recombination loss in an optimized BHJ was characterized previously.However,the driving force that leads to this reduction was not clearly understood.In this study,we focus on the decreased carrier recombination loss and its driving force in optimized nonfullerene acceptor-based PTB7-Th:IEICO-4F BHJ composites.We demonstrate that the optimized BHJ shows deactivation in the sub-nanosecond nongeminate carrier recombination process.The driving force for this deactivation was determined to be the improved interchain hole delocalization between the polymers.An enhanced interchain hole delocalization was observed using steady-state photoinduced absorption(PIA)spectroscopy.In particular,increased splitting between the polaron PIA bands was noted.Moreover,improved interchain hole delocalization was observed for other state-of-the-art BHJ materials,including D18:Y6 with optimized morphologies.
基金supported by the National Natural Science Foundation of China (Grant No. 52072229)the Key-grant Project of the Ministry of Education of China (Grant No. 311033)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. GK201706001)the Teaching Reform and Innovation Project of Higher Education in Shanxi Province, China (Grant No. J2021719)。
文摘To study the influence of thickness on the magnetic properties of ReBCO(Re = Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide(GdBCO) bulk superconductor fabricated by the Re + 011 top seeded infiltration growth(Re + 011 TSIG) method was continuously sliced along the bottom to obtain samples of different thickness. The levitation force and attractive force of these samples were tested at 77 K in the zero-field-cooled(ZFC)state. It is found that as the sample thickness decreases, the levitation force decreases gradually whereas the attractive force increases. This is related to the varied ability to resist the penetration of magnetic field occasioned by varying sample thickness, which are deeply revealed by combining with the characteristics of the non-ideal type-II superconductor. Further,the levitation force exhibits a trend of slow initial change followed by rapid change, which may be attributed to the growth of the sample. Measurement of the trapped field shows that a similar distribution of trapped field at the top and bottom surfaces can be achieved by removing some materials from the bottom of the bulk. These results provide a reference for meeting the actual requirements of ReBCO bulks of different thicknesses and greatly contribute to practical designs and applications.
基金supported by the Special Project for the Central Government to Guide Local Technological Development (GUIKE ZY20198008)the Guangxi Technology Base and talent Subject (GUIKE AD20238012,AD20297086)+5 种基金the Natural Science Foundation of Guangxi Province (2021GXNSFDA075012)the National Natural Science Foundation of China (51902108,52104298,22169004)the National Natural Science Foundation of China (U20A20249)the Regional Innovation and Development Joint Fundthe Guangxi Innovation Driven Development Subject (GUIKE AA19182020,19254004)the Special Fund for Guangxi Distinguished Expert。
文摘Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_(2)O_(4) coating and Mg,Fe co-doping were constructed simultaneously by Mg,Fe surface treatment to suppress lattice oxygen evolution and P2-O2 phase transformation of P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)at deep charging.Through ex-situ X-ray diffraction(XRD)tests,we found that the Mg,Fe bulk co-doping could reduce the repulsion between transition metals and Na+/vacancies ordering,thus inhibiting the P2-O2 phase transition and significantly reducing the irreversible volume change of the material.Meanwhile,the internal electric field formed by the dielectric polarization of Mg Fe_(2)O_(4) effectively inhibits the outward migration of oxidized O^(a-)(a<2),thereby suppressing the lattice oxygen evolution at deep charging,confirmed by in situ Raman and ex situ XPS techniques.P2-Na NM@MF-3 shows enhanced high-voltage cycling performance with capacity retentions of 84.8% and 81.3%at 0.1 and 1 C after cycles.This work sheds light on regulating the surface chemistry for Na-layered oxide materials to enhance the high-voltage performance of Na-ion batteries.
基金Project(2012M511401)supported by China Postdoctoral Science FoundationProject(12JJ5018)supported by Hunan Provincial Natural Science Foundation of China+1 种基金Project(2012RS4006)supported by Hunan Provincial Science and Technology Plan of ChinaProject(CSUZC2012028)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.