According to the movement and change rules of mechanical structure of surrounding rock coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that disting...According to the movement and change rules of mechanical structure of surrounding rock coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that distinguishing the occurring of the pressure bump were put forward. This criteria have been applied successfully in the comprehensive prevent of pressure bumps in Tangshan colliery.展开更多
Based on field measurement, the relations was introduced between mining bepth and the peak value places of abutment pressures in long wall face of the deep colliery with caving method to handle goaf, and the reasons a...Based on field measurement, the relations was introduced between mining bepth and the peak value places of abutment pressures in long wall face of the deep colliery with caving method to handle goaf, and the reasons aod kinds of pressure bumps are analysed under the action of tbe moving and constant abutment pressures formed by the method of long wall caving or room and pillar mining, and the relative precautions were put foward to prevent the pressure bumps in deep mining.展开更多
Rock mass dynamics disasters caused by excavations and mining occur frequently in deep mines.In order to establish a theoretical system and control technologies for such disasters,we first classify and define dynamic ...Rock mass dynamics disasters caused by excavations and mining occur frequently in deep mines.In order to establish a theoretical system and control technologies for such disasters,we first classify and define dynamic disasters,such as rock bursts,coal bursts,mine pressure bumps,and mine earthquakes.According to the occurrence mechanism of different types of dynamic disasters,we establish a compensation control theory based on excavation and mining effects.On the basis,we propose three key technologies:high prestress compensation technology for the roadway,pressure relief technology using directional roof cutting,and the goaf filling technology using broken rock dilation.These three technologies constitute the compensation control method for dynamic disasters in deep mines.Finally,this method was successfully applied in a deep coal mine with high stress,with monitored results suggesting its rationality.This work provides a new concept and control method for the prevention of rock dynamic disasters in deep mines.展开更多
文摘According to the movement and change rules of mechanical structure of surrounding rock coal mass system during coal excavation, the mechanism of sudden instability and damage was found out. The criterions that distinguishing the occurring of the pressure bump were put forward. This criteria have been applied successfully in the comprehensive prevent of pressure bumps in Tangshan colliery.
文摘Based on field measurement, the relations was introduced between mining bepth and the peak value places of abutment pressures in long wall face of the deep colliery with caving method to handle goaf, and the reasons aod kinds of pressure bumps are analysed under the action of tbe moving and constant abutment pressures formed by the method of long wall caving or room and pillar mining, and the relative precautions were put foward to prevent the pressure bumps in deep mining.
基金supported by the Natural Science Foundation of China(Nos.41941018,52074164,42077267,42277174,and 52204260)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘Rock mass dynamics disasters caused by excavations and mining occur frequently in deep mines.In order to establish a theoretical system and control technologies for such disasters,we first classify and define dynamic disasters,such as rock bursts,coal bursts,mine pressure bumps,and mine earthquakes.According to the occurrence mechanism of different types of dynamic disasters,we establish a compensation control theory based on excavation and mining effects.On the basis,we propose three key technologies:high prestress compensation technology for the roadway,pressure relief technology using directional roof cutting,and the goaf filling technology using broken rock dilation.These three technologies constitute the compensation control method for dynamic disasters in deep mines.Finally,this method was successfully applied in a deep coal mine with high stress,with monitored results suggesting its rationality.This work provides a new concept and control method for the prevention of rock dynamic disasters in deep mines.