This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of ...This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of the composite egg-shaped pressure hull for manufacturing or further investigations.A total of 15 optimal designs for the composite egg-shaped pressure hull under hydrostatic pressure are obtained in terms of fibers’angles and the number of layers for 5 lay-up arrangements and 3 unidirectional(UD)composite materials.The optimization process is performed utilizing a genetic algorithm and FEA in ANSYS.The minimization of the buoyancy factor eB:FT is selected as the objective for the optimization under constraints on both material failure and buckling strength.Nonlinear buckling analysis is conducted for one optimal design considering both geometric nonlinearity and imperfections.A sensitivity study is also conducted to further investigate the influence of the design variables on the optimal design of the egg-shaped pressure hull.展开更多
To increase the payload,reduce energy consumption,improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible.This paper introduces a design optimization process for the pres...To increase the payload,reduce energy consumption,improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible.This paper introduces a design optimization process for the pressurehull of submarines under uniform external hydrostatic pressure using bothfinite element analysis(FEA)and optimization tools.A comprehensive study about the optimum design of the pressure hull,to minimize the weight and increase the volume,to reach minimum buoyancy factor and maximum operating depth minimizing the buoyancy factor(B.F)is taken as an objective function with constraints of plate and frame yielding,general instability and deflection.The optimization process contains many design variables such as pressure-hull plate thickness,unsupported spacing,dimensions of long and ring beams andfinally the elliptical submersible pressure-hull diameters.The optimization process was conducted using ANSYS parametric design language(APDL)and ISIGHT.The Multi-Island Genetic Algorithm(G.A)is considered to conduct the optimization process.Additionally,parametric analysis is done on the pressure hull to examine the effect of different design variables on the pressure-hull design.As a result,the B.F of the proposed optimal model is reduced by an average of 31.78%compared with Reference Model(RM).Maximum von Mises stress is reduced by 27%as well.These results can be helpful for submarine pressure-hull designers.展开更多
基金This work is supported by the National Natural Science Foundation of China research grant#51679056Natural Science Foundation of Heilongjiang Province of China grant#E2016024.
文摘This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of the composite egg-shaped pressure hull for manufacturing or further investigations.A total of 15 optimal designs for the composite egg-shaped pressure hull under hydrostatic pressure are obtained in terms of fibers’angles and the number of layers for 5 lay-up arrangements and 3 unidirectional(UD)composite materials.The optimization process is performed utilizing a genetic algorithm and FEA in ANSYS.The minimization of the buoyancy factor eB:FT is selected as the objective for the optimization under constraints on both material failure and buckling strength.Nonlinear buckling analysis is conducted for one optimal design considering both geometric nonlinearity and imperfections.A sensitivity study is also conducted to further investigate the influence of the design variables on the optimal design of the egg-shaped pressure hull.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.NRF-2021R1A2B5B02002599)。
文摘To increase the payload,reduce energy consumption,improve work efficiency and therefore must accordingly reduce the total hull weight of the submersible.This paper introduces a design optimization process for the pressurehull of submarines under uniform external hydrostatic pressure using bothfinite element analysis(FEA)and optimization tools.A comprehensive study about the optimum design of the pressure hull,to minimize the weight and increase the volume,to reach minimum buoyancy factor and maximum operating depth minimizing the buoyancy factor(B.F)is taken as an objective function with constraints of plate and frame yielding,general instability and deflection.The optimization process contains many design variables such as pressure-hull plate thickness,unsupported spacing,dimensions of long and ring beams andfinally the elliptical submersible pressure-hull diameters.The optimization process was conducted using ANSYS parametric design language(APDL)and ISIGHT.The Multi-Island Genetic Algorithm(G.A)is considered to conduct the optimization process.Additionally,parametric analysis is done on the pressure hull to examine the effect of different design variables on the pressure-hull design.As a result,the B.F of the proposed optimal model is reduced by an average of 31.78%compared with Reference Model(RM).Maximum von Mises stress is reduced by 27%as well.These results can be helpful for submarine pressure-hull designers.