期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of Coriolis and centrifugal forces on flow and heat transfer at high rotation number and high density ratio in non orthogonally internal cooling channel 被引量:2
1
作者 Brahim Berrabah Miloud Aminallah 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期216-234,共19页
Numerical predictions of three-dimensional flow and heat transfer are performed for a two-pass square channel with 45° staggered ribs in non-orthogonally mode-rotation using the second moment closure model. At Re... Numerical predictions of three-dimensional flow and heat transfer are performed for a two-pass square channel with 45° staggered ribs in non-orthogonally mode-rotation using the second moment closure model. At Reynolds number of 25,000, the rotation numbers studied were 0,0.24, 0.35 and 1.00. The density ratios were 0.13, 0.23 and 0.50. The results show that at high buoyancy parameter and high rotation number with a low density ratio, the flow in the first passage is governed by the secondary flow induced by the rotation whereas the secondary flow induced by the skewed ribs was almost distorted. As a result the heat transfer rate is enhanced on both co-trailing and co-leading sides compared to low and medium rotation number. In contrast, for the second passage, the rotation slightly reduces the heat transfer rate on co-leading side at high rotation number with a low density ratio and degrades it significantly on both co-trailing and co-leading sides at high buoyancy parameter compared to the stationary, low and medium rotation numbers. The numerical results are in fair agreement with available experimental data in the bend region and the second passage, while in the first passage were overestimated at low and medium rotation numbers. 展开更多
关键词 Blade cooling Computational FluidDynamic (CFD) Heat transfer High buoyancy parameter High rotation number
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部