We characterize the agreement and disagreement of four publically available burned products(Fire CCI,Copernicus Burnt Area,MODIS MCD45A1,and MODIS MCD64A1)at a finer spatial and temporal scale than previous assessment...We characterize the agreement and disagreement of four publically available burned products(Fire CCI,Copernicus Burnt Area,MODIS MCD45A1,and MODIS MCD64A1)at a finer spatial and temporal scale than previous assessments using a grid of three-dimensional cells defined both in space and in time.Our analysis,conducted using seven years of data(2005–2011),shows that estimates of burned area vary greatly between products in terms of total area burned,the location of burning,and the timing of the burning.We use regional and monthly units for analysis to provide insight into the variation between products that can be lost when considering products yearly and/or globally.Comparison with independent,contemporaneous MODIS active fire observations provides one indication of which products most reasonably capture the burning regime.Our results have implications for the use of global burned area products in fire ecology,management and emissions applications.展开更多
基金This work was supported in part by NASA Grant#NNX14AI68G.
文摘We characterize the agreement and disagreement of four publically available burned products(Fire CCI,Copernicus Burnt Area,MODIS MCD45A1,and MODIS MCD64A1)at a finer spatial and temporal scale than previous assessments using a grid of three-dimensional cells defined both in space and in time.Our analysis,conducted using seven years of data(2005–2011),shows that estimates of burned area vary greatly between products in terms of total area burned,the location of burning,and the timing of the burning.We use regional and monthly units for analysis to provide insight into the variation between products that can be lost when considering products yearly and/or globally.Comparison with independent,contemporaneous MODIS active fire observations provides one indication of which products most reasonably capture the burning regime.Our results have implications for the use of global burned area products in fire ecology,management and emissions applications.