Calcined magnesite is a binding additive and an MgO-bearing flux for pellets production. The effects of cal- cination temperature and time on the characteristics of calcined magnesite were investigated. Experimental r...Calcined magnesite is a binding additive and an MgO-bearing flux for pellets production. The effects of cal- cination temperature and time on the characteristics of calcined magnesite were investigated. Experimental results in dicated that the best calcination condition was 850℃ and 1h. Under this condition, the hydration activity of the eal cined magnesite was 80.56%, and the average diameter of crystal grain D, specific surface area S and the medium particle size D50 were 25.4 nm, 45.40 m2/g and 3.41μm, respectively. This kind of calcined magnesite was a good binding additive for pellets production. At the same proportion of calcined magnesite, the effects of activities of cal cined magnesite on metallurgical properties of green pellet and indurated pellet showed that calcined magnesite with high activity could improve the dropping strength and compressive strength of green pellet and enhance the burst temperature of green pellet; however, the effects of activity on compressive strength, low-temperature reduction degradation index, reduction swelling index and reduction index of indurated pellet were not obvious.展开更多
The 2015/16 El Nio developed from weak warm conditions in late 2014 and NINO3.4 reached 3℃ in November 2015. We describe the characteristics of the evolution of the 2015/16 El Nio using various data sets including ...The 2015/16 El Nio developed from weak warm conditions in late 2014 and NINO3.4 reached 3℃ in November 2015. We describe the characteristics of the evolution of the 2015/16 El Nio using various data sets including SST, surface winds,outgoing longwave radiation and subsurface temperature from an ensemble operational ocean reanalyses, and place this event in the context of historical ENSO events since 1979. One salient feature about the 2015/16 El Nio was a large number of westerly wind bursts and downwelling oceanic Kelvin waves(DWKVs). Four DWKVs were observed in April-November 2015 that initiated and enhanced the eastern-central Pacific warming. Eastward zonal current anomalies associated with DWKVs advected the warm pool water eastward in spring/summer. An upwelling Kelvin wave(UWKV) emerged in early November 2015 leading to a rapid decline of the event. Another outstanding feature was that NINO4 reached a historical high(1.7℃), which was 1℃(0.8℃) higher than that of the 1982/83(1997/98) El Nio . Although NINO3 was comparable to that of the 1982/83 and 1997/98 El Nio , NINO1+2 was much weaker. Consistently, enhanced convection was displaced 20 degree westward, and the maximum D20 anomaly was about 1/3.1/2 of that in 1997 and 1982 near the west coast of South America.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51074206,51074040)
文摘Calcined magnesite is a binding additive and an MgO-bearing flux for pellets production. The effects of cal- cination temperature and time on the characteristics of calcined magnesite were investigated. Experimental results in dicated that the best calcination condition was 850℃ and 1h. Under this condition, the hydration activity of the eal cined magnesite was 80.56%, and the average diameter of crystal grain D, specific surface area S and the medium particle size D50 were 25.4 nm, 45.40 m2/g and 3.41μm, respectively. This kind of calcined magnesite was a good binding additive for pellets production. At the same proportion of calcined magnesite, the effects of activities of cal cined magnesite on metallurgical properties of green pellet and indurated pellet showed that calcined magnesite with high activity could improve the dropping strength and compressive strength of green pellet and enhance the burst temperature of green pellet; however, the effects of activity on compressive strength, low-temperature reduction degradation index, reduction swelling index and reduction index of indurated pellet were not obvious.
文摘The 2015/16 El Nio developed from weak warm conditions in late 2014 and NINO3.4 reached 3℃ in November 2015. We describe the characteristics of the evolution of the 2015/16 El Nio using various data sets including SST, surface winds,outgoing longwave radiation and subsurface temperature from an ensemble operational ocean reanalyses, and place this event in the context of historical ENSO events since 1979. One salient feature about the 2015/16 El Nio was a large number of westerly wind bursts and downwelling oceanic Kelvin waves(DWKVs). Four DWKVs were observed in April-November 2015 that initiated and enhanced the eastern-central Pacific warming. Eastward zonal current anomalies associated with DWKVs advected the warm pool water eastward in spring/summer. An upwelling Kelvin wave(UWKV) emerged in early November 2015 leading to a rapid decline of the event. Another outstanding feature was that NINO4 reached a historical high(1.7℃), which was 1℃(0.8℃) higher than that of the 1982/83(1997/98) El Nio . Although NINO3 was comparable to that of the 1982/83 and 1997/98 El Nio , NINO1+2 was much weaker. Consistently, enhanced convection was displaced 20 degree westward, and the maximum D20 anomaly was about 1/3.1/2 of that in 1997 and 1982 near the west coast of South America.