GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light cur...GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light curve with a decay index ofα=7.53 is steeper than the steepest possible decay from an external shock model.We propose that this X-ray afterglow can be driven by dipolar radiation from the magnetar spindown during its early stage,while the magnetar collapsed into the black hole before its spindown,resulting in a very steep decay of the late X-ray light curve.The optical data show that the light curve is still rising after 1.1 ks,suggesting a late onset.We show that GRB 200612A’s optical afterglow light curve is fitted with the forward shock model by Gaussian structured off-axis jet.This is a special case among GRBs,as it may be an ultralong gamma-ray burst powered by a magnetar in an off-axis observation scenario.展开更多
As one class of the most important objects in the universe,magnetars can produce a lot of different frequency bursts including X-ray bursts.In Cai et al.,75 X-ray bursts produced by magnetar SGR J1935+2154 during an a...As one class of the most important objects in the universe,magnetars can produce a lot of different frequency bursts including X-ray bursts.In Cai et al.,75 X-ray bursts produced by magnetar SGR J1935+2154 during an active period in 2020 are published,including the duration and net photon counts of each burst,and waiting time based on the trigger time difference.In this paper,we utilize the power-law model,dN(x)/dx∝(x+x_0)~((-α)_x),to fit the cumulative distributions of these parameters.It can be found that all the cumulative distributions can be well fitted,which can be interpreted by a self-organizing criticality theory.Furthermore,we check whether this phenomenon still exists in different energy bands and find that there is no obvious evolution.These findings further confirm that the X-ray bursts from magnetars are likely to be generated by some self-organizing critical process,which can be explained by a possible magnetic reconnection scenario in magnetars.展开更多
The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse ...The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse widths, however, there is no correlation between the relative spectral lags and the relative pulse widths. We suspect that the correlations between spectral lags and pulse widths might be caused by the Lorentz factor of the GRBs concerned. Our analysis on the relative quantities suggests that the intrinsic spectral lag might reflect other aspect of pulses than the aspect associated with the dynamical time of shocks or that associated with the time delay due to the curvature effect.展开更多
We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct prediction...We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct predictions is about equal for RWC-China and WWA; the rate of too high predictions is greater for RWC-China than for WWA, while the rate of too low predictions is smaller for RWC-China than for WWA.展开更多
Gamma-ray bursts (GRBs) are the most intense transient gamma-ray events in the sky; this, together with the strong evidence (the isotropic and inhomogeneous distribution of GRBs detected by BASTE) that they are locat...Gamma-ray bursts (GRBs) are the most intense transient gamma-ray events in the sky; this, together with the strong evidence (the isotropic and inhomogeneous distribution of GRBs detected by BASTE) that they are located at cosmological distances, makes them the most energetic events ever known. For example, the observed radiation energies of some GRBs are equivalent to the total convertion into radiation of the mass energy of more than one solar mass. This is thousand times stronger than the energy of a supernova explosion. Some unconventional energy mechanism and extremely high conversion efficiency for these mysterious events are required. The discovery of host galaxies and association with supernovae at cosmological distances by the recently launched satellite of BeppoSAX and ground based radio and optical telescopes in GRB afterglow provides further support to the cosmological origin of GRBs and put strong constraints on their central engine. It is the aim of this article to review the possible central engines, energy mechanisms, dynamical and spectral evolution of GRBs, especially focusing on the afterglows in multi-wavebands.展开更多
Using 64 ms count data of long gamma-ray bursts (T90 〉 2.6 s), we analyze the quantity named relative spectral lag (RSL), T31/FWHM(1). We investigated in detail all the correlations between the RSL and other pa...Using 64 ms count data of long gamma-ray bursts (T90 〉 2.6 s), we analyze the quantity named relative spectral lag (RSL), T31/FWHM(1). We investigated in detail all the correlations between the RSL and other parameters for a sample of nine long bursts, using the general cross-correlation technique that includes the lag between two different energy bands. We conclude that the distribution of RSLs is normal and has a mean value of 0.1; that the RSLs are weakly correlated with the FWHM, the asymmetry, peak flux (Fp), peak energy (Ep) and spectral indexes (α and β), while they are uncorrelated with τ31, the hardness- ratio (HR31) and the peak time (tm). Our important discovery is that redshift (z) and peak luminosity (Lp) are strongly correlated with the RSL, which can be measured easily and directly, making the RSL a good redshift and peak luminosity indicator.展开更多
Seventy-one occurrences of coronal mass ejections (CMEs) associated with radio bursts, seemingly associated with type III bursts/fine structures (FSs), in the centimeter-metric frequency range during 2003-2005, we...Seventy-one occurrences of coronal mass ejections (CMEs) associated with radio bursts, seemingly associated with type III bursts/fine structures (FSs), in the centimeter-metric frequency range during 2003-2005, were obtained with the spectrometers at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC) and the Culgoora radio spectrometer and are presented. The statistical results of 68 out of 71 events associated with the radio type III bursts or FSs during the initiation or early stages of the CMEs indicate that most CMEs contain the emissions of radio type III bursts/FSs near the time of the CME's onset, in spite of their fast or slow speeds. Therefore, we propose that type III bursts and FSs are possible precursors of the onset of CMEs. We stress that the radio type III bursts/FSs in the centimetermetric wavelength region and the CME transients possibly occurred in conjunction with the origin of the coronal precursor structures. Thus, the statistical results support the suggestions that type III bursts/FSs are indicators of extra energy input into the corona at the CMEs' onset, and that the type III bursts/FSs are produced primarily due to a coronal instability which eventually triggers the CME process. This may signify that the centimeter-metric radio bursts corresponding to or near the CME's onset are caused by the disturbed corona (possibly including minor magnetic reconnections).展开更多
POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polar...POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.展开更多
We report the detection of type-B quasi-periodic oscillation(QPO)of the black hole X-ray binary Swift J1728.9-3613 observed by NICER during the 2019 outburst.A type-B QPO was observed for the first two days and it dis...We report the detection of type-B quasi-periodic oscillation(QPO)of the black hole X-ray binary Swift J1728.9-3613 observed by NICER during the 2019 outburst.A type-B QPO was observed for the first two days and it disappeared as flux increased,but again appeared at∼7.70 Hz when flux was dramatically decreased.The source was found in the soft intermediate state during these observations.We further studied the energy dependence of the QPO.We found that QPO was observed only for a higher energy range implying that the origin of QPO is possibly due to the corona emitting higher energy photons by the inverse Compton process.The variation of spectral parameters can be explained with the disk truncation model.The fractional rms was found to be monotonically increased with energy.The phase lag spectrum followed the“U-shaped”curve.The rms and phase lag spectrum are modeled and explained with the single-component Comptonization model vkompthdk.展开更多
56Cu is close to the waiting-point nucleus 56Ni and lies on the rapid proton capture(rp) process path in Type I X-ray bursts(XRBs). In this work, we obtained a revised thermonuclear reaction rate of 55Ni(p,γ)56...56Cu is close to the waiting-point nucleus 56Ni and lies on the rapid proton capture(rp) process path in Type I X-ray bursts(XRBs). In this work, we obtained a revised thermonuclear reaction rate of 55Ni(p,γ)56Cu in the temperature region relevant to XRBs. This rate was recalculated based on the recent experimental level structure in 56Cu, the recently measured proton separation energy of Sp = 579.8(7.1) keV, together with shell-model calculation, and the mirror nuclear structure in 56Co. The associated uncertainties in the rates were estimated by a Monte Carlo method. Our revised rate is significantly different from the recent results, which were partially based on experimental results; in addition, we found that a result in a previous work was incorrect. We recommend our revised rate to be incorporated in the future astrophysical network calculations.展开更多
We study RXTE PCA data for the high mass X-ray binary source SMC X-1 between 2003–10 and 2003–12 when the source was in its high states.The source is found to be frequently bursting which can be seen as flares in li...We study RXTE PCA data for the high mass X-ray binary source SMC X-1 between 2003–10 and 2003–12 when the source was in its high states.The source is found to be frequently bursting which can be seen as flares in lightcurves that occur at a rate of one every 800 s, with an average of 4–5 Type Ⅱ X-ray bursts per hour.We note that typically a burst was short, lasting for a few tens of seconds in addition to a few long bursts spanning more than a hundred seconds that were also observed.The flares apparently occupied 2.5% of the total observing time of 225.5 ks.We note a total of 272 flares with mean FWHM of the flare ~21 s.The rms variability and aperiodic variability are independent of flares.As observed, the pulse profiles of the lightcurves do not change their shape, implying that there is no change in the geometry of an accretion disk due to a burst.The hardness ratio and rms variability of lightcurves exhibit no correlation with the flares.The flare fraction shows a positive correlation with the peak-to-peak ratio of the primary and secondary peaks of the pulse profile.The observed hardening or softening of the spectrum cannot be correlated with the flaring rate but may be due to the interstellar absorption of X-rays as evident from the change in hydrogen column density(n_H).It is found that the luminosity of the source increases with the flaring rate.Considering that the viscous timescale is equal to the mean recurrence time of flares, we fixed the viscosity parameter α ~ 0.16.展开更多
Based on nine BATSE GRBs with known redshifts, we found that the maximum spectral lag of all the pulses in a gamma-ray burst (GRB) appears to be anti-correlated with the redshift of the burst. In order to confirm th...Based on nine BATSE GRBs with known redshifts, we found that the maximum spectral lag of all the pulses in a gamma-ray burst (GRB) appears to be anti-correlated with the redshift of the burst. In order to confirm this finding, we analyzed 10 GRBs detected by HETE-2 with known redshifts and found a similar relation. Using the relation, we estimated the redshifts of 878 long GRBs in the BATSE catalog, then we investigated the distributions of the redshifts and 869 Eiso of these GRBs. The distribution of the estimated redshifts is concentrated at z = 1.4 and the distribution of Eiso peaks at 10^52.5 erg. The underlying physics of the correlation is unclear at present.展开更多
Appearing in the composite spectral data of BATSE, EGRET and COMPTEL for GRB 910503, there is a bump at around 1600keV. We perform a statistical analysis on the spectral data, trying to find out if the bump could be a...Appearing in the composite spectral data of BATSE, EGRET and COMPTEL for GRB 910503, there is a bump at around 1600keV. We perform a statistical analysis on the spectral data, trying to find out if the bump could be accounted for by a blue-shifted and significantly broadened rest frame line due to the Doppler effect of an expanding fireball surface. We made an F-test and adopted previously proposed criteria. The study reveals that the criteria are well satisfied and the feature can be interpreted as the blue shifted 6.4 keV line. From the fit with this line taken into account, we find the Lorentz factor of this source to be F = 116-9^+9 (at the 68% confident level, △X^2 = 1) and the rest frame spectral peak energy to be E0,p=2.96-0.18^+0.24 ke V.Although the existence of the emission line feature requires other independent tests to confirm, the analysis suggests that it is feasible to detect emission line features in the high energy range of GRB spectra when taking into account the Doppler effect of fireball expansion.展开更多
We analyzed a sample of 66 gamma-ray bursts (GRBs) and statistically confirmed the prediction on the time curve of the hardness ratio of GRBs made by Qin et al. based on the curvature effect. In their analysis, GRB ...We analyzed a sample of 66 gamma-ray bursts (GRBs) and statistically confirmed the prediction on the time curve of the hardness ratio of GRBs made by Qin et al. based on the curvature effect. In their analysis, GRB pulses are divided into three types according to the shape of their raw hardness ratio (RHR) time curves, defined as to include the background counts to the signal counts, so as to make use of counts within small time intervals. Of the three types, very hard sources exhibit a perfect pulse-like profile (type 1), hard bursts possess a pulse-like profile with a dip in the decay phase (type 2), and soft bursts show no pulse-like profile but have only a dipped profile (type 3). In terms of the conventional hardness ratio, type 3 sources are indeed generally softer than those of type 1 and type 2, in agreement with the prediction. We found that the minimum value of RHR is sensitive in distinguishing the different types. We propose that GRB pulses can be classified according to the minimum value of RHR and that the different type sources may be connected with different strengths of the shock or/and the magnetic field.展开更多
When the axis of a gamma-ray burst (GRB) does not coincide with the spin axis of its source, there may result a ring-shaped jet. Using some refined jet dynamics, we calculate multi-wavelength afterglow light curves ...When the axis of a gamma-ray burst (GRB) does not coincide with the spin axis of its source, there may result a ring-shaped jet. Using some refined jet dynamics, we calculate multi-wavelength afterglow light curves for such ring-shaped jets. In the R-band we find an obvious break in the afterglow light curve due to the beaming effect and the break is affected by many parameters, such as the electron energy fraction ζe, the magnetic energy fraction ζB^2, the width of ring △θ and the medium number density n. The overall light curve can be divided into three power-law stages, i.e., an ultra-relativistic stage, an after-break stage and a deep Newtonian stage. For each stage the power-law index is larger in the ring-shaped jet than in the corresponding conical jet.展开更多
There is strong evidence for the existence of black holes (BHs) in some X-ray binaries and in most galactic nuclei based on different types of measurement, but black holes have not been definitely identified for the l...There is strong evidence for the existence of black holes (BHs) in some X-ray binaries and in most galactic nuclei based on different types of measurement, but black holes have not been definitely identified for the lack of very firm observational evidence up to now. Because direct evidence for BHs should come from determination of strong gravitational redshift, we expect an object can fall into the region near the BH horizon where radiation can be detected. Therefore the object must be a compact star such as a neutron star (NS), and intense astrophysical processes will release highly energetic radiation that is transient and fast-varying. These characteristics may point to the observed gamma-ray bursts (GRBs). Recent observations of iron lines suggest that afterglows of GRBs show properties similar to those observed in active galactic nuclei (AGNs), implying that the GRBs may originate from intense events related to black holes. A model for GRBs and after-glows is proposed here to obtain the range of gravitational redshifts (zg) of GRBs with known cosmological redshifts. Here, we provide a new method that, with a search for high-energy emission lines (X- or -γ-rays) in GRBs, one can determine the gravitational redshift. We expect zg to be 0.5 or even larger, so we can rule out the possibility of other compact objects such as NSs, and identify the central progenitors of GRBs as black holes.展开更多
We investigate the forming of gamma-ray burst pulses with a simple onedimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a...We investigate the forming of gamma-ray burst pulses with a simple onedimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a series of pressure waves. We give a relativistic geometric recurrence formula that connects the time when the pressure waves are produced and the time when the corresponding shocks occurred. This relation enables us to relate the pulse magnitude with the observation time. Our analysis shows that the evolution of the pressure waves leads to a fast rise and an exponential decay pulses. In determining the width of the pulses, the acceleration time is more important than that of the deceleration.展开更多
We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we ...We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs.展开更多
Observations on relativistic jets in radio galaxies, active galactic nuclei, and 'microquasars' revealed that many of these outflows are cylindrical, not conical. So it is worthwhile to investigate the evoluti...Observations on relativistic jets in radio galaxies, active galactic nuclei, and 'microquasars' revealed that many of these outflows are cylindrical, not conical. So it is worthwhile to investigate the evolution of cylindrical jets in gamma-ray bursts. We discuss afterglows from cylindrical jets in a wind environment. Numerical results as well as analytic solutions in some special cases are presented. Our light curves are steeper compared to those in the homogeneous interstellar medium case, carefully considered by Cheng, Huang & Lu. We conclude that some afterglows, used to be interpreted as isotropic fireballs in a wind environment, can be fitted as well by cylindrical jets interacting with a wind.展开更多
A statistical analysis is made on the correlation between solar proton events with energies >10Mev and solar radio bursts during the four-year period from 1997 November to 2000 November. We examine 28 solar proton ...A statistical analysis is made on the correlation between solar proton events with energies >10Mev and solar radio bursts during the four-year period from 1997 November to 2000 November. We examine 28 solar proton events and their corresponding solar radio bursts at 15400, 8800, 4995, 2695, 1415, 606, 410 and 245 MHz. The statistical result shows that there is a close association between solar proton events and ≥3 solar radio bursts occurring at several frequencies, one or two days before. In particular, it is noteworthy that proton events occurring in pairs within the same month are preceded 1-2 days by individual radio bursts and most of the radio bursts of solar flares occur at all eight frequencies. Those 245 MHz radio bursts associated with proton events have intense peak fluxes (up to 67000 sfu). Solar proton events are preceded 1 or 2 days by≥ 3 radio bursts at several frequencies and proton events occurring in pairs within the same month are preceded 1 or 2 days by some individual radio bursts. These correlations may be used for providing short-term or medium-term prediction of solar proton events.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U1938201 and 12373042)。
文摘GRB 200612A could be classified as an ultralong gamma-ray burst due to its prompt emission lasting up to~1020 s and the true timescale of the central engine activity t_(burst)≥4×10^(4) s.The late X-ray light curve with a decay index ofα=7.53 is steeper than the steepest possible decay from an external shock model.We propose that this X-ray afterglow can be driven by dipolar radiation from the magnetar spindown during its early stage,while the magnetar collapsed into the black hole before its spindown,resulting in a very steep decay of the late X-ray light curve.The optical data show that the light curve is still rising after 1.1 ks,suggesting a late onset.We show that GRB 200612A’s optical afterglow light curve is fitted with the forward shock model by Gaussian structured off-axis jet.This is a special case among GRBs,as it may be an ultralong gamma-ray burst powered by a magnetar in an off-axis observation scenario.
基金supported by the National Key R&D Program of China(2021YFA0718500)the National Natural Science Foundation of China under grants U2038106 and 12065017partially by the Jiangxi Provincial Natural Science Foundation under grant 20224ACB211001。
文摘As one class of the most important objects in the universe,magnetars can produce a lot of different frequency bursts including X-ray bursts.In Cai et al.,75 X-ray bursts produced by magnetar SGR J1935+2154 during an active period in 2020 are published,including the duration and net photon counts of each burst,and waiting time based on the trigger time difference.In this paper,we utilize the power-law model,dN(x)/dx∝(x+x_0)~((-α)_x),to fit the cumulative distributions of these parameters.It can be found that all the cumulative distributions can be well fitted,which can be interpreted by a self-organizing criticality theory.Furthermore,we check whether this phenomenon still exists in different energy bands and find that there is no obvious evolution.These findings further confirm that the X-ray bursts from magnetars are likely to be generated by some self-organizing critical process,which can be explained by a possible magnetic reconnection scenario in magnetars.
基金the National Natural Science Foundation of China.
文摘The phenomenon of gamma-ray burst (GRB) spectral lags is very common, but a definitive explanation has not yet been given. From a sample of 82 GRB pulses we find that the spectral lags are correlated with the pulse widths, however, there is no correlation between the relative spectral lags and the relative pulse widths. We suspect that the correlations between spectral lags and pulse widths might be caused by the Lorentz factor of the GRBs concerned. Our analysis on the relative quantities suggests that the intrinsic spectral lag might reflect other aspect of pulses than the aspect associated with the dynamical time of shocks or that associated with the time delay due to the curvature effect.
基金Supported by the National Natural Science Foundation of China
文摘We present a verification of the short-term predictions of solar X-ray bursts for the maximum phase (2000–2001) of Solar Cycle 23, issued by two prediction centers. The results are that the rate of correct predictions is about equal for RWC-China and WWA; the rate of too high predictions is greater for RWC-China than for WWA, while the rate of too low predictions is smaller for RWC-China than for WWA.
基金a RGC grant of the Hong Kong Government and the National Natural Science Foundation of China.
文摘Gamma-ray bursts (GRBs) are the most intense transient gamma-ray events in the sky; this, together with the strong evidence (the isotropic and inhomogeneous distribution of GRBs detected by BASTE) that they are located at cosmological distances, makes them the most energetic events ever known. For example, the observed radiation energies of some GRBs are equivalent to the total convertion into radiation of the mass energy of more than one solar mass. This is thousand times stronger than the energy of a supernova explosion. Some unconventional energy mechanism and extremely high conversion efficiency for these mysterious events are required. The discovery of host galaxies and association with supernovae at cosmological distances by the recently launched satellite of BeppoSAX and ground based radio and optical telescopes in GRB afterglow provides further support to the cosmological origin of GRBs and put strong constraints on their central engine. It is the aim of this article to review the possible central engines, energy mechanisms, dynamical and spectral evolution of GRBs, especially focusing on the afterglows in multi-wavebands.
基金Supported by the National Natural Science Foundation of China.
文摘Using 64 ms count data of long gamma-ray bursts (T90 〉 2.6 s), we analyze the quantity named relative spectral lag (RSL), T31/FWHM(1). We investigated in detail all the correlations between the RSL and other parameters for a sample of nine long bursts, using the general cross-correlation technique that includes the lag between two different energy bands. We conclude that the distribution of RSLs is normal and has a mean value of 0.1; that the RSLs are weakly correlated with the FWHM, the asymmetry, peak flux (Fp), peak energy (Ep) and spectral indexes (α and β), while they are uncorrelated with τ31, the hardness- ratio (HR31) and the peak time (tm). Our important discovery is that redshift (z) and peak luminosity (Lp) are strongly correlated with the RSL, which can be measured easily and directly, making the RSL a good redshift and peak luminosity indicator.
基金Supported by the National Natural Science Foundation of Chinasupported by the National Basic Research Program of the MOST (Grant No.2011CB811403)the CAS-NSFC Key Project (Grant No. 10978006)
文摘Seventy-one occurrences of coronal mass ejections (CMEs) associated with radio bursts, seemingly associated with type III bursts/fine structures (FSs), in the centimeter-metric frequency range during 2003-2005, were obtained with the spectrometers at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC) and the Culgoora radio spectrometer and are presented. The statistical results of 68 out of 71 events associated with the radio type III bursts or FSs during the initiation or early stages of the CMEs indicate that most CMEs contain the emissions of radio type III bursts/FSs near the time of the CME's onset, in spite of their fast or slow speeds. Therefore, we propose that type III bursts and FSs are possible precursors of the onset of CMEs. We stress that the radio type III bursts/FSs in the centimetermetric wavelength region and the CME transients possibly occurred in conjunction with the origin of the coronal precursor structures. Thus, the statistical results support the suggestions that type III bursts/FSs are indicators of extra energy input into the corona at the CMEs' onset, and that the type III bursts/FSs are produced primarily due to a coronal instability which eventually triggers the CME process. This may signify that the centimeter-metric radio bursts corresponding to or near the CME's onset are caused by the disturbed corona (possibly including minor magnetic reconnections).
基金supported by Department of Physics and GXUNAOC Center for Astrophysics and Space Sciences,Guangxi UniversityThe National Natural Science Foundation of China(Nos.12027803,U1731239,12133003,12175241,U1938201,U1732266)the Guangxi Science Foundation(Nos.2018GXNSFGA281007,2018JJA110048).
文摘POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.
文摘We report the detection of type-B quasi-periodic oscillation(QPO)of the black hole X-ray binary Swift J1728.9-3613 observed by NICER during the 2019 outburst.A type-B QPO was observed for the first two days and it disappeared as flux increased,but again appeared at∼7.70 Hz when flux was dramatically decreased.The source was found in the soft intermediate state during these observations.We further studied the energy dependence of the QPO.We found that QPO was observed only for a higher energy range implying that the origin of QPO is possibly due to the corona emitting higher energy photons by the inverse Compton process.The variation of spectral parameters can be explained with the disk truncation model.The fractional rms was found to be monotonically increased with energy.The phase lag spectrum followed the“U-shaped”curve.The rms and phase lag spectrum are modeled and explained with the single-component Comptonization model vkompthdk.
基金supported by the National Natural Science Foundation of China(Nos.11825504,11490562,and 11675229)the Major State Basic Research Development Program of China(No.2016YFA0400503)
文摘56Cu is close to the waiting-point nucleus 56Ni and lies on the rapid proton capture(rp) process path in Type I X-ray bursts(XRBs). In this work, we obtained a revised thermonuclear reaction rate of 55Ni(p,γ)56Cu in the temperature region relevant to XRBs. This rate was recalculated based on the recent experimental level structure in 56Cu, the recently measured proton separation energy of Sp = 579.8(7.1) keV, together with shell-model calculation, and the mirror nuclear structure in 56Co. The associated uncertainties in the rates were estimated by a Monte Carlo method. Our revised rate is significantly different from the recent results, which were partially based on experimental results; in addition, we found that a result in a previous work was incorrect. We recommend our revised rate to be incorporated in the future astrophysical network calculations.
文摘We study RXTE PCA data for the high mass X-ray binary source SMC X-1 between 2003–10 and 2003–12 when the source was in its high states.The source is found to be frequently bursting which can be seen as flares in lightcurves that occur at a rate of one every 800 s, with an average of 4–5 Type Ⅱ X-ray bursts per hour.We note that typically a burst was short, lasting for a few tens of seconds in addition to a few long bursts spanning more than a hundred seconds that were also observed.The flares apparently occupied 2.5% of the total observing time of 225.5 ks.We note a total of 272 flares with mean FWHM of the flare ~21 s.The rms variability and aperiodic variability are independent of flares.As observed, the pulse profiles of the lightcurves do not change their shape, implying that there is no change in the geometry of an accretion disk due to a burst.The hardness ratio and rms variability of lightcurves exhibit no correlation with the flares.The flare fraction shows a positive correlation with the peak-to-peak ratio of the primary and secondary peaks of the pulse profile.The observed hardening or softening of the spectrum cannot be correlated with the flaring rate but may be due to the interstellar absorption of X-rays as evident from the change in hydrogen column density(n_H).It is found that the luminosity of the source increases with the flaring rate.Considering that the viscous timescale is equal to the mean recurrence time of flares, we fixed the viscosity parameter α ~ 0.16.
基金Supported by the National Natural Science Foundation of China.
文摘Based on nine BATSE GRBs with known redshifts, we found that the maximum spectral lag of all the pulses in a gamma-ray burst (GRB) appears to be anti-correlated with the redshift of the burst. In order to confirm this finding, we analyzed 10 GRBs detected by HETE-2 with known redshifts and found a similar relation. Using the relation, we estimated the redshifts of 878 long GRBs in the BATSE catalog, then we investigated the distributions of the redshifts and 869 Eiso of these GRBs. The distribution of the estimated redshifts is concentrated at z = 1.4 and the distribution of Eiso peaks at 10^52.5 erg. The underlying physics of the correlation is unclear at present.
基金Supported by the National Natural Science Foundation of China.
文摘Appearing in the composite spectral data of BATSE, EGRET and COMPTEL for GRB 910503, there is a bump at around 1600keV. We perform a statistical analysis on the spectral data, trying to find out if the bump could be accounted for by a blue-shifted and significantly broadened rest frame line due to the Doppler effect of an expanding fireball surface. We made an F-test and adopted previously proposed criteria. The study reveals that the criteria are well satisfied and the feature can be interpreted as the blue shifted 6.4 keV line. From the fit with this line taken into account, we find the Lorentz factor of this source to be F = 116-9^+9 (at the 68% confident level, △X^2 = 1) and the rest frame spectral peak energy to be E0,p=2.96-0.18^+0.24 ke V.Although the existence of the emission line feature requires other independent tests to confirm, the analysis suggests that it is feasible to detect emission line features in the high energy range of GRB spectra when taking into account the Doppler effect of fireball expansion.
基金the National Natural Science Foundation of China(Grants 10533050 and 10573030)
文摘We analyzed a sample of 66 gamma-ray bursts (GRBs) and statistically confirmed the prediction on the time curve of the hardness ratio of GRBs made by Qin et al. based on the curvature effect. In their analysis, GRB pulses are divided into three types according to the shape of their raw hardness ratio (RHR) time curves, defined as to include the background counts to the signal counts, so as to make use of counts within small time intervals. Of the three types, very hard sources exhibit a perfect pulse-like profile (type 1), hard bursts possess a pulse-like profile with a dip in the decay phase (type 2), and soft bursts show no pulse-like profile but have only a dipped profile (type 3). In terms of the conventional hardness ratio, type 3 sources are indeed generally softer than those of type 1 and type 2, in agreement with the prediction. We found that the minimum value of RHR is sensitive in distinguishing the different types. We propose that GRB pulses can be classified according to the minimum value of RHR and that the different type sources may be connected with different strengths of the shock or/and the magnetic field.
基金the National Natural Science Foundation of China(Grants 10625313 and 10221001)
文摘When the axis of a gamma-ray burst (GRB) does not coincide with the spin axis of its source, there may result a ring-shaped jet. Using some refined jet dynamics, we calculate multi-wavelength afterglow light curves for such ring-shaped jets. In the R-band we find an obvious break in the afterglow light curve due to the beaming effect and the break is affected by many parameters, such as the electron energy fraction ζe, the magnetic energy fraction ζB^2, the width of ring △θ and the medium number density n. The overall light curve can be divided into three power-law stages, i.e., an ultra-relativistic stage, an after-break stage and a deep Newtonian stage. For each stage the power-law index is larger in the ring-shaped jet than in the corresponding conical jet.
基金This research is supported by the National Natural Science FOundation of China.
文摘There is strong evidence for the existence of black holes (BHs) in some X-ray binaries and in most galactic nuclei based on different types of measurement, but black holes have not been definitely identified for the lack of very firm observational evidence up to now. Because direct evidence for BHs should come from determination of strong gravitational redshift, we expect an object can fall into the region near the BH horizon where radiation can be detected. Therefore the object must be a compact star such as a neutron star (NS), and intense astrophysical processes will release highly energetic radiation that is transient and fast-varying. These characteristics may point to the observed gamma-ray bursts (GRBs). Recent observations of iron lines suggest that afterglows of GRBs show properties similar to those observed in active galactic nuclei (AGNs), implying that the GRBs may originate from intense events related to black holes. A model for GRBs and after-glows is proposed here to obtain the range of gravitational redshifts (zg) of GRBs with known cosmological redshifts. Here, we provide a new method that, with a search for high-energy emission lines (X- or -γ-rays) in GRBs, one can determine the gravitational redshift. We expect zg to be 0.5 or even larger, so we can rule out the possibility of other compact objects such as NSs, and identify the central progenitors of GRBs as black holes.
基金Supported by the National Natural Science Foundation of China.
文摘We investigate the forming of gamma-ray burst pulses with a simple onedimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a series of pressure waves. We give a relativistic geometric recurrence formula that connects the time when the pressure waves are produced and the time when the corresponding shocks occurred. This relation enables us to relate the pulse magnitude with the observation time. Our analysis shows that the evolution of the pressure waves leads to a fast rise and an exponential decay pulses. In determining the width of the pulses, the acceleration time is more important than that of the deceleration.
文摘We performed detailed time-resolved spectroscopy of bright tong gamma- ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a black body and a power law to fit the spectra. We find that for the latter model there are indications of an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two blackbodies and a power law adequately fits the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several interesting features that appear in all three GRBs, like (a) temperatures of the blackbodies are strongly correlated with each other, (b) fluxes in the black body components are strongly correlated with each other, (c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and (d) the characteristics of power law components like the spectral index and the delayed onset bear a close similarity to the emission characteristics in the GeV regions. We discuss the implications of these results and the possibility of identifying the radiation mechanisms during the prompt emission of GRBs.
基金Supported by the National Natural Science Foundation of China.
文摘Observations on relativistic jets in radio galaxies, active galactic nuclei, and 'microquasars' revealed that many of these outflows are cylindrical, not conical. So it is worthwhile to investigate the evolution of cylindrical jets in gamma-ray bursts. We discuss afterglows from cylindrical jets in a wind environment. Numerical results as well as analytic solutions in some special cases are presented. Our light curves are steeper compared to those in the homogeneous interstellar medium case, carefully considered by Cheng, Huang & Lu. We conclude that some afterglows, used to be interpreted as isotropic fireballs in a wind environment, can be fitted as well by cylindrical jets interacting with a wind.
文摘A statistical analysis is made on the correlation between solar proton events with energies >10Mev and solar radio bursts during the four-year period from 1997 November to 2000 November. We examine 28 solar proton events and their corresponding solar radio bursts at 15400, 8800, 4995, 2695, 1415, 606, 410 and 245 MHz. The statistical result shows that there is a close association between solar proton events and ≥3 solar radio bursts occurring at several frequencies, one or two days before. In particular, it is noteworthy that proton events occurring in pairs within the same month are preceded 1-2 days by individual radio bursts and most of the radio bursts of solar flares occur at all eight frequencies. Those 245 MHz radio bursts associated with proton events have intense peak fluxes (up to 67000 sfu). Solar proton events are preceded 1 or 2 days by≥ 3 radio bursts at several frequencies and proton events occurring in pairs within the same month are preceded 1 or 2 days by some individual radio bursts. These correlations may be used for providing short-term or medium-term prediction of solar proton events.