期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems 被引量:2
1
作者 ZHANG RuiLi TANG YiFa +2 位作者 ZHU BeiBei TU XiongBiao ZHAO Yue 《Science China Mathematics》 SCIE CSCD 2016年第2期379-396,共18页
Based on Feng's theory of formal vector fields and formal flows, we study the convergence problem of the formal energies of symplectic methods for Hamiltonian systems and give the clear growth of the coefficients ... Based on Feng's theory of formal vector fields and formal flows, we study the convergence problem of the formal energies of symplectic methods for Hamiltonian systems and give the clear growth of the coefficients in the formal energies. With the help of B-series and Bernoulli functions, we prove that in the formal energy of the mid-point rule, the coefficient sequence of the merging products of an arbitrarily given rooted tree and the bushy trees of height 1(whose subtrees are vertices), approaches 0 as the number of branches goes to ∞; in the opposite direction, the coefficient sequence of the bushy trees of height m(m ≥ 2), whose subtrees are all tall trees, approaches ∞ at large speed as the number of branches goes to +∞. The conclusion extends successfully to the modified differential equations of other Runge-Kutta methods. This disproves a conjecture given by Tang et al.(2002), and implies:(1) in the inequality of estimate given by Benettin and Giorgilli(1994) for the terms of the modified formal vector fields, the high order of the upper bound is reached in numerous cases;(2) the formal energies/formal vector fields are nonconvergent in general case. 展开更多
关键词 convergence analysis formal energy symplectic method Hamiltonian system bushy tree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部