At the present, the cutters used in button bits and rock bits are mainly cobalt tungsten carbide in our country. Because of its low abrasive resistance, the bit service life and drilling efficiency was very low when t...At the present, the cutters used in button bits and rock bits are mainly cobalt tungsten carbide in our country. Because of its low abrasive resistance, the bit service life and drilling efficiency was very low when the hard and extremely hard formations were being drilled. Owing to its high abrasive resistance, the diamond composite material is widely used in drilling operations. However, its toughness against impact is too low to be used in percussion drilling, only can it be used in rotary drilling. In order to solve the problems encountered by DTH hammer in hard rock drilling, make bit life longer, increase rate of penetration and decrease drilling cost, a new type diamond enhanced tungsten carbide composite button with high abrasive resistance and high toughness against impact, which may be used in percussion drilling, has been developed. The key problems to make the button are to improve the thermal stability of diamond, to increase the welding strength between diamond and cemented tungsten carbide, and to lower the sintering temperature of tungsten carbide. All these problems have been solved effectively by pretreatment of diamond, low temperature activation hot-press sintering and high sintering pressure. (1) To plate tungsten on the surface of diamond. Diamond suffers easily from erosion in the environment of high temperature containing oxygen and iron family elements. There is very high energy between the interface of diamond and bonding metal and so the metallurgical bond can’t form at the interface between diamond and bond metal. This will lower greatly the bending strength and the toughness against impact of diamond enhanced tungsten carbide composite button. In order to improve thermal stability of diamond and increase the bonding strength of the interface between diamond and bond metal, to plate tungsten on the surface of diamond by vacuum vapor deposit is adopted. (2) To lower the sintering temperature by adding nickel, phosphorus and boron etc into conventional mixed powder. In general, the sintering temperature of cemented tungsten carbide is more than 1 350 ℃ in which diamond will suffer from serious heat erosion, so the sintering temperature must be lowered. To add nickel, phosphorus and boron etc into cobalt-base bond whose melting point is more than 1 350 ℃ will lower the sintering temperature to about 1 050 ℃. To add phosphorus can lower the temperature of liquid phase occurring and promote the densification of matrix alloy in advance because the co-crystallization temperature of Ni-P and Co-P is 880 ℃ and 1 020 ℃ respectively. The proper adding amount of nickel, phosphorus and boron etc is a key problem. To substitute nickel for partial cobalt can improve the toughness against impact of diamond enhanced tungsten carbide composite button and lower the sintering temperature. To add boron is helpful for sintering and improving the toughness against impact of diamond enhanced tungsten carbide composite button. (3) To increase the sintering press. Under the same sintering temperature, to improve the sintering press can improve the density and strength of sintering products. In this study to increase the sintering press 35 MPa in the usual conditions to 50~60 MPa in sintering diamond enhanced tungsten carbide button by adopting ceramic material as pressing rod has improved the sintering quality effectively. The properties of the button have been measured under lab conditions. The testing results show that its hardness is more than HRA86 and that its abrasiveness resistance is 100 times more than conventional cemented tungsten carbide, and its toughness against impact is more than 100J. All these data theoretically show that the button has very good mechanical properties that can meet the need of percussion drilling, and can solve the problems encountered with button bit of conventional cemented tungsten carbide.展开更多
文摘At the present, the cutters used in button bits and rock bits are mainly cobalt tungsten carbide in our country. Because of its low abrasive resistance, the bit service life and drilling efficiency was very low when the hard and extremely hard formations were being drilled. Owing to its high abrasive resistance, the diamond composite material is widely used in drilling operations. However, its toughness against impact is too low to be used in percussion drilling, only can it be used in rotary drilling. In order to solve the problems encountered by DTH hammer in hard rock drilling, make bit life longer, increase rate of penetration and decrease drilling cost, a new type diamond enhanced tungsten carbide composite button with high abrasive resistance and high toughness against impact, which may be used in percussion drilling, has been developed. The key problems to make the button are to improve the thermal stability of diamond, to increase the welding strength between diamond and cemented tungsten carbide, and to lower the sintering temperature of tungsten carbide. All these problems have been solved effectively by pretreatment of diamond, low temperature activation hot-press sintering and high sintering pressure. (1) To plate tungsten on the surface of diamond. Diamond suffers easily from erosion in the environment of high temperature containing oxygen and iron family elements. There is very high energy between the interface of diamond and bonding metal and so the metallurgical bond can’t form at the interface between diamond and bond metal. This will lower greatly the bending strength and the toughness against impact of diamond enhanced tungsten carbide composite button. In order to improve thermal stability of diamond and increase the bonding strength of the interface between diamond and bond metal, to plate tungsten on the surface of diamond by vacuum vapor deposit is adopted. (2) To lower the sintering temperature by adding nickel, phosphorus and boron etc into conventional mixed powder. In general, the sintering temperature of cemented tungsten carbide is more than 1 350 ℃ in which diamond will suffer from serious heat erosion, so the sintering temperature must be lowered. To add nickel, phosphorus and boron etc into cobalt-base bond whose melting point is more than 1 350 ℃ will lower the sintering temperature to about 1 050 ℃. To add phosphorus can lower the temperature of liquid phase occurring and promote the densification of matrix alloy in advance because the co-crystallization temperature of Ni-P and Co-P is 880 ℃ and 1 020 ℃ respectively. The proper adding amount of nickel, phosphorus and boron etc is a key problem. To substitute nickel for partial cobalt can improve the toughness against impact of diamond enhanced tungsten carbide composite button and lower the sintering temperature. To add boron is helpful for sintering and improving the toughness against impact of diamond enhanced tungsten carbide composite button. (3) To increase the sintering press. Under the same sintering temperature, to improve the sintering press can improve the density and strength of sintering products. In this study to increase the sintering press 35 MPa in the usual conditions to 50~60 MPa in sintering diamond enhanced tungsten carbide button by adopting ceramic material as pressing rod has improved the sintering quality effectively. The properties of the button have been measured under lab conditions. The testing results show that its hardness is more than HRA86 and that its abrasiveness resistance is 100 times more than conventional cemented tungsten carbide, and its toughness against impact is more than 100J. All these data theoretically show that the button has very good mechanical properties that can meet the need of percussion drilling, and can solve the problems encountered with button bit of conventional cemented tungsten carbide.