The aim of this study was to develop and examine the morphology and distribution of mercury (Hg) in flue gas desulfurization (FGD) by-product.</span></span><span><span><span style="font...The aim of this study was to develop and examine the morphology and distribution of mercury (Hg) in flue gas desulfurization (FGD) by-product.</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mercury in the coal of coal-fired power plants is concentrated in the by-products of desulfurization process, and it is widely used as an additive in cement, building materials and other industries. Due to the different stability of various forms of mercury in the environment, subsequent use of products containing desulfurization by-product additives will continue to be released into the environment, endangering human health. Therefore, it is very necessary to study the form and distribution of mercury in the by-products of desulfurization in coal-fired power plants to provide a theoretical basis for subsequent harmless treatment.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">For content and morphology of mercury analysis, 1 sample of dry FGD ash and 6 samples of wet FGD gypsum were analyzed. The total 7 samples were extracted using a modification of sequential chemical extractions (SCE) method, which was employed for the partitioning Hg into four fractions: water soluble, acid soluble, H<sub>2</sub>O<sub>2</sub> soluble, and residual. The Hg analysis was done with United States Environmental Protection Agency (USEPA) method</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">7471B. Comparing with the wet FGD gypsums of coal-fired boilers, the total Hg content in the dry FGD by-product was as high as</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.22 mg/kg, while the total Hg content in the FGD gypsum is 0.23</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">0.74 mg/kg, which was 2 times over the wet FGD gypsum. The concentration of water soluble Hg in the dry FGD by-product was the highest amount (0.72 mg/kg), accounting for 59.02% of the total mercury. While residual Hg content was 0.16 mg/kg, only about 13.11% of the total mercury. Mercury content in FGD gypsum was expressed in the form of <i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(residual Hg) ></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">(H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> soluble Hg)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(water soluble Hg)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(acid soluble Hg). The morphology and distribution of mercury in FGD by-products is supposed to be analyzed before utilization, and the impact of mercury on the environment should be considered.展开更多
The influence of various water soluble cations(K^+,Na^+,Ca^2+,Mg^2+)on the hydration of calcined flue gas desulphurization gypsum was investigated.The results show that all cations but Ca^2+can accelerate the hydratio...The influence of various water soluble cations(K^+,Na^+,Ca^2+,Mg^2+)on the hydration of calcined flue gas desulphurization gypsum was investigated.The results show that all cations but Ca^2+can accelerate the hydration of bassanite.The final crystal size is not largely influenced by different salts,except for Na^+,where the giant crystal with length of>130μm is observed.Current study clarifies the influence of different ions on the hydration of bassanite,which could provide sufficient guide for the pre-treatment of original flue gas desulphurization gypsum before actual application.展开更多
Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon...Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon content and large particle size (>45μm).But it is thought that the rejected ash may have potential uses in chemical stabilization/solidification (S/S) processes which need relatively lower strengths and a lower chemical reactivity.Flue Gas Desulphurisation (FGD) sludge is a by-product of air pollution control equipment in coal fired power plants whose chemical composition is mainly gypsum.As there is no effective usage of both of these two materials,it is of interest to research on the possible activation of rFA using FGD.This paper presents experimental results of a study on the properties of rFA activated by the FGD in rFA-cement pastes.Different percentages of FGD were added into the mix to study the effects of the FGD on the reaction of the rFA blended cement pastes.The results show that FGD takes effect as an activator only at late curing ages.Adding Ca(OH) 2 enhances the effect of FGD on activating the hydration of rFA.Also,10% FGD by weight of rFA is the optimal addition in the rFA-cement pastes.The results of the compressive strength measurements correlate well with the porosity results.展开更多
Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hiera...Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances.展开更多
The research background and technical features of Baosteel sintering flue gas desulphurization ( FGD)--swirl- jet-absorbing wet limestone-gypsum sintering FGD technology, process and equipment are introduced in this...The research background and technical features of Baosteel sintering flue gas desulphurization ( FGD)--swirl- jet-absorbing wet limestone-gypsum sintering FGD technology, process and equipment are introduced in this paper. Main contents and achievements of the pilot experiment and the engineering practice of Baosteel FGD are analyzed and discussed systematically. Past engineering practice experiences indicate that Baosteel FGD has the following merits: wide applicability to sintering flue gas features, such as frequently changing temperatures, unstable SO2 concentration, intensively fluctuating flow rates ,etc. ,high pollutants removal efficiency ,low investment and energy consumption; stable and reliable operation ,utilizable byproduct (gypsum), etc. It indicates that Baosteel sintering FGD is of extensive application value for the FGD of large and medium-scaled sintering machines.展开更多
The paper first introduces the background and the mechanism of secondary pollution from desulfurization in cement plant. Then, take plant A as an example, using MGGH (media gas-gas heater) to control “white smoke”. ...The paper first introduces the background and the mechanism of secondary pollution from desulfurization in cement plant. Then, take plant A as an example, using MGGH (media gas-gas heater) to control “white smoke”. MGGH uses heat medium water to heat transfer between the original flue gas and the clean flue gas, without additional heat source, and has obvious economic benefits, which is the inevitable development direction of desulfurization reform of cement kiln system in the future.展开更多
The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performanc...The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.展开更多
Due to coal’s availability and low cost, coal combustion continues to be the United States’ primary energy source. However, coal combustion produces large quantities of waste material. Some coal combustion by-produc...Due to coal’s availability and low cost, coal combustion continues to be the United States’ primary energy source. However, coal combustion produces large quantities of waste material. Some coal combustion by-products (CCBs) have chemical and physical characteristics that make them potentially useful as soil amendments. The objectives of this study were to characterize a relatively new, high-calcium dry flue gas desulfurization (DFGD) by-product and compare its agronomic liming potential to a Class-C fly ash (FA) and reagent-grade calcium carbonate (CaCO3). Calcium car-bonate equivalence (CCE), degree of fineness (DOF), and effective neutralizing value (ENV) for each CCB were determined using standard methods. The CCBs and CaCO3 were also incubated with an acidic (~4.5) clay sub-soil at application rates equiva-lent to 0, 0.5, 1, and 2 times the soil’s lime requirement and compared to an una-mended control. Soil pH was then measured periodically during a 40-day incubation. The ENV of 79.4% for the DFGD by-product and 57.3% for the FA were comparable to those of commercially available liming materials, but were significantly lower (P < 0.05) than that of reagent-grade CaCO3. After 40 days of incubation at the 0.5× ap-plication rate, both CCBs raised the pH of the clay soil to only 5.0, while the CaCO3 raised the pH to 6.5. After 40 days at the 1× rate, all three materials had raised the soil pH to between 6.5 and 7.0, although the FA increased the soil pH more slowly than did the other two materials. At the 2× rate, both CCBs increased the soil pH to between 7.5 and 8.0, while the CaCO3 increased the soil pH to only 7.0. Both CCBs appear to be useful as soil liming materials, although care should be taken to avoid over-application, as this may make the soil too alkaline for optimum plant growth.展开更多
The feasibility of utilization of flue gas desulfurization (FGD) gypsum and Class-C fly ash (CFA) to prepare CFA-based geopolymer were studied. The results showed that geopolymer made from 90% CFA and 10% FGD gyps...The feasibility of utilization of flue gas desulfurization (FGD) gypsum and Class-C fly ash (CFA) to prepare CFA-based geopolymer were studied. The results showed that geopolymer made from 90% CFA and 10% FGD gypsum (FGDG) which was thermally treated at 800 ℃ for 1 h obtained the better compressive strength of 37.0 MPa. The micro characteristics and structures of the geopolymer samples of CFA and CFA-FGDG were tested by XRD, FT-IR, and SEM-EDXA after these samples cured at 75 ℃ for 8 h followed by 23 ℃ for 28 d. Both the geopolymer samples of CFA and CFA-FGDG have significant asymmetric stretching of A1-O/Si-O bonds and Si-O-Si / Si-O-A1 bending band. In geopolymer sample of CFA-FGDG, a small quantity of lathy products probably being the ettringite wrapped over the spherical fly ash particle, and the concentration of sulfur is much more than that in geopolymer sample of CFA. It is indicated that FGD gypsum may react during alkali-activated and geopolymeric process.展开更多
In the paper, the gas-liquid two-phase flow performance and desulfurisation performance of the gas-liquid screen scrubber were experimentally studied when limestone was used as absorbent. Experiments were carried out ...In the paper, the gas-liquid two-phase flow performance and desulfurisation performance of the gas-liquid screen scrubber were experimentally studied when limestone was used as absorbent. Experiments were carried out at varying the flue gas velocity and slurry flux in concurrent and countercurrent tower respectively. The experimental results showed that the flow resistance of absorber increased rapidly with an increase of the flue gas velocity whether in concurrent or in countereurrent tower, and the up trend of the flow resistance in the cotmtercurrent tower was higher than those in the concurrent one. The influence of the flue gas velocity on the flow resistance of absorber was more than those of the slurry flux density. Whether in the concurrent tower or in the cotmtercurrent one, increasing the flue gas velocity or the slurry flux density would enhance the desulphurization efficiency. The influence of the slurry flux density on the desulfurisation efficiency was greater than those of the flue gas velocity.展开更多
With the revision of emission standards, deep desulphurization and DeNO X is needed in circulating fluidized bed (CFB) boilers. The operation of the first set of 300-MW CFB boiler plus limestone/gypsum wet flue gas de...With the revision of emission standards, deep desulphurization and DeNO X is needed in circulating fluidized bed (CFB) boilers. The operation of the first set of 300-MW CFB boiler plus limestone/gypsum wet flue gas desulphurization (FGD) system in the world shows that deep desulphurization and DeNO X of CFB boilers has higher SO2 removal efficiency at a lower Ca/S ratio compared with traditional inner desulphurization mode. It can meet the increasingly rigid emission standards, and is suitable for more fuels. Deep desulphurization and DeNO X can also achieve a highly-efficient high-temperature CFB boiler that can not only achieve inner desulphurization and low NO X emission, but benefits low-grade, high sulfur content fuels as well. Research of deep desulphurization and DeNO X will be a developing direction for CFB boilers.展开更多
The removal of SO 2 from flue gas by pulsed corona discharge in presence of ammonia was experimentally investigated. The results showed that the SO 2 removal mainly depends on thermal reaction of SO 2 with NH 3 and en...The removal of SO 2 from flue gas by pulsed corona discharge in presence of ammonia was experimentally investigated. The results showed that the SO 2 removal mainly depends on thermal reaction of SO 2 with NH 3 and enhancements of 0%—25% by pulsed corona discharge in the range of the specific energy 0—5 Wh/Nm 3. The aerosol mass concentration, mainly composed of ammonium sulfate, increased with specific energy dissipated into the reactor. With an initial concentration of 2000—2100 ppmv SO 2 and energy consumption of 3 Wh/Nm 3, when a stoichiometric amount of ammonia is injected, the removal efficiency of SO 2 and percentage of ammonium sulfates in reaction products are all ≥80%. The collection efficiency of the reactor for aerosol is about 74% at a flue gas temperature of 60 to 65℃ and a water vapor content of 9% to 11% volume.展开更多
An experimental study has been performed systematically on flue gas desulphurization by using circulating fluidized bed. The relationship, between desulphurization efficiency and the parameters of thermodynamics and c...An experimental study has been performed systematically on flue gas desulphurization by using circulating fluidized bed. The relationship, between desulphurization efficiency and the parameters of thermodynamics and chemistry, was investigated basically. It is shown that the bed temperature and the vapor partial pressure in the bed are the important parameters that influence the desulphurization efficiency. The closer the bed temperature to the dew point and the higher the vapor partial pressure, the higher is the desulphurization efficiency. With increasing of Ca/S. the desulphurization efficiency ascends. Comparing with different operating methods, the optimum method has been found.展开更多
Using a sonochemical reactor designed by the authors,the process of removing sulfur dioxide from cit- rate solution simulating the flue gas desulfurization was studied.The influence of ultrasonic frequency,ultrasonic ...Using a sonochemical reactor designed by the authors,the process of removing sulfur dioxide from cit- rate solution simulating the flue gas desulfurization was studied.The influence of ultrasonic frequency,ultrasonic power,reaction temperature,stirring speed,inert gases,initial concentration of sulfur dioxide and concentration of citrate on the efficiency of sulfur dioxide desorption,the stability of citrate solution and the concentration of sulfate radical was examined systematically.By comparing the desorption of sulfur dioxide with and without ultrasonifica- tion,it was concluded that(1)lower ultrasonic frequency results in a better degassing efficiency;(2)the use of ul- trasonification in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in some condi- tions,without changing the essence of chemical reactions;(3)sparging inert gas into the liquid can lower the vis- cosity of solution and the cavitating threshold,and raise the desorption efficiency.These results demonstrate a technical way for deep desorption of sulfur dioxide and provide the fundamental data for future industrial disposal of sulfur dioxide.展开更多
The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of...The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of the gas-phase,and the liquid-phase on absorption efficiency of sulfur dioxide and the influence of ultrasonic frequency,ultrasonic power and stirring speed on desorption efficiency of sulfur dioxide were examined.The results indicate that the absorption efficiency decreases with increasing flow velocity and sulfur dioxide content in gas-phase,and can be improved by increasing the concentration and the pH value of citrate solution.It is concluded that lower ultrasonic frequency results in a better degassing efficiency.The using of ultrasound in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in the some conditions,without changing the essence of chemical reaction.展开更多
The mercury flux in soils was investigated, which were amended by gypsums from flue gas desulphurization (FGD) units of coal- fired power plants. Studies have been carried out in confined greenhouses using FGD gypsu...The mercury flux in soils was investigated, which were amended by gypsums from flue gas desulphurization (FGD) units of coal- fired power plants. Studies have been carried out in confined greenhouses using FGD gypsum treated soils. Major research focus is uptakes of mercury by plants, and emission of mercury into the atmosphere under varying application rates of FGD gypsum, simulating rainfall irrigations, soils, and plants types. Higher FGD gypsum application rates generally led to higher mercury concentrations in the soils, the increased mercury emissions into the atmosphere, and the increased mercury contents in plants (especially in roots and leaves). Soil properties and plant species can play important roles in mercury transports. Some plants, such as tall fescue, were able to prevent mercury from atmospheric emission and infiltration in the soil. Mercury concentration in the stem of plants was found to be increased and then leveled off upon increasing FGD gypsum application. However, mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates. Some mercury was likely absorbed by leaves of plants from emitted mercury in the atmosphere.展开更多
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W...Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.展开更多
The iron ore sintering process is the main source of SO_2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO_2 emissions in the flue gas in the iron ore ...The iron ore sintering process is the main source of SO_2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO_2 emissions in the flue gas in the iron ore sintering process by adding urea at a given distance from the sintering grate bar. In this paper, a pilot-scale experiment was carried out in a commercial sintering plant. The results showed that, compared to the SO_2 concentration in flue gas without urea addition, the SO_2 concentration decreased substantially from 694.2 to 108.0 mg/m^3 when 0.10wt% urea was added. NH_3 decomposed by urea reacted with SO_2 to produce(NH_4)_2SO_4, decreasing the SO_2 concentration in the flue gas.展开更多
Among the technologies to control SO2 emission from coal-fired boilers, the dry flue gas desulphurization (FGD) method, with appropriate modifications, has been identified as a candidate for realizing high SO2 removal...Among the technologies to control SO2 emission from coal-fired boilers, the dry flue gas desulphurization (FGD) method, with appropriate modifications, has been identified as a candidate for realizing high SO2 removal efficiency to meet both technical and economic requirements, and for making the best quality byproduct gypsum as a useful additive for improving alkali soil. Among the possible modifications two major factors have been selected for study: (1) favorable chemical reaction kinetics at elevated temperatures and the sorbent characteristics; (2) enhanced diffusion of SO2 to the surface and within the pores of sorbent particles that are closely related to gas-solid two-phase flow patterns caused by flue gas and sorbent particles in the reactor. To achieve an ideal pore structure, a sorbent was prepared through hydration reaction by mixing lime and fly ash collected from bag house of power plants to form a slurry, which was first dewatered and then dried. The dry sorbent was found capable of rapid conversion of 70% of its calcium content at 700℃, reaching a desulphurization efficiency of over 90% at a Ca/S ratio of 1.3. Experiments confirmed that the diffusion effect of SO2 is an important factor and that gas-solid two-phase flow plays a key role to mixing and contact between SO2 and sorbent particles. For designing the FDG reactor, a new theoretical drag model was developed by combination of CFD with the Energy Minimization Multi-Scale (EMMS) theory for dense fluidi-zation systems. This new drag model was first verified by comparing calculated and measured drag values, and was then implemented in simulation of gas-solid two-phase flow in two circulating fluidized beds with different sizes and flow parameters. One riser has diameter and height of 0.15 m×3m and another one 0.2m×14.2m. Their superficial gas velocities are 4 and 5.2 m·s-1, respectively, and the circulating rate 53 and 489 kg·(m-2·s-1). FCC particles were used in both cases. The results show that not only the static pressure drop along the riser height, but also radial distributions of particle volume fraction have been very well predicted in comparison with experiments. The new drag model is expected to shed more light on the further improvement of SO2 diffusion to solid sorbent and optimization of reactor structure.展开更多
The need to operate a boiler efficiently in today’s environment is at the top of many plant owners and operators lists. Unfortunately, operating a boiler efficiently and meeting local emission regulations do not alwa...The need to operate a boiler efficiently in today’s environment is at the top of many plant owners and operators lists. Unfortunately, operating a boiler efficiently and meeting local emission regulations do not always go hand in hand. However, advances in boiler system design and technology have made this a much more achievable task. The potential for energy improvements and cost savings is substantial when considered that most boilers operating today are performing at efficiencies that are less than 70 percent. The performance calculation and rectification measures are essential for performance evaluation and efficiency enhancement. Since the efficiency decreases from time to time it is required to find out the losses occurring in boiler using proper methodology. The environmental issues and economy are the secondary factors to be considered after finding the losses. Due to increase in fuel price and demand in more energy requirement in everyday life, proper utilization of materials and resources are necessary. This present deals with the aim of estimating the heat losses occurring in thermal power plant boilers and hence finding suitable ways for reducing it, hence allowing plants to achieve more performance, sustainability and cost-effective maintenance operation of a steam system.展开更多
文摘The aim of this study was to develop and examine the morphology and distribution of mercury (Hg) in flue gas desulfurization (FGD) by-product.</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mercury in the coal of coal-fired power plants is concentrated in the by-products of desulfurization process, and it is widely used as an additive in cement, building materials and other industries. Due to the different stability of various forms of mercury in the environment, subsequent use of products containing desulfurization by-product additives will continue to be released into the environment, endangering human health. Therefore, it is very necessary to study the form and distribution of mercury in the by-products of desulfurization in coal-fired power plants to provide a theoretical basis for subsequent harmless treatment.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">For content and morphology of mercury analysis, 1 sample of dry FGD ash and 6 samples of wet FGD gypsum were analyzed. The total 7 samples were extracted using a modification of sequential chemical extractions (SCE) method, which was employed for the partitioning Hg into four fractions: water soluble, acid soluble, H<sub>2</sub>O<sub>2</sub> soluble, and residual. The Hg analysis was done with United States Environmental Protection Agency (USEPA) method</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">7471B. Comparing with the wet FGD gypsums of coal-fired boilers, the total Hg content in the dry FGD by-product was as high as</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.22 mg/kg, while the total Hg content in the FGD gypsum is 0.23</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">0.74 mg/kg, which was 2 times over the wet FGD gypsum. The concentration of water soluble Hg in the dry FGD by-product was the highest amount (0.72 mg/kg), accounting for 59.02% of the total mercury. While residual Hg content was 0.16 mg/kg, only about 13.11% of the total mercury. Mercury content in FGD gypsum was expressed in the form of <i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(residual Hg) ></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">(H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> soluble Hg)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(water soluble Hg)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(acid soluble Hg). The morphology and distribution of mercury in FGD by-products is supposed to be analyzed before utilization, and the impact of mercury on the environment should be considered.
基金supported by the National Natural Science Foundation of China(No.51473152)Scientific research foundation for Young Talents from Fujian Provincial Department of Education(No.JT180494)+2 种基金Start-up Foundation for Advanced Talents in Sanming University(No.18YG07)Industry-University-Research Cooperation Fund from Sanming Institute of Fluorine Chemical Industry Technology(FCIT20180105)Scientific research Platform Construction Pproject from Fujian Provincial Department of Science and Technology(No.2018H2002).
文摘The influence of various water soluble cations(K^+,Na^+,Ca^2+,Mg^2+)on the hydration of calcined flue gas desulphurization gypsum was investigated.The results show that all cations but Ca^2+can accelerate the hydration of bassanite.The final crystal size is not largely influenced by different salts,except for Na^+,where the giant crystal with length of>130μm is observed.Current study clarifies the influence of different ions on the hydration of bassanite,which could provide sufficient guide for the pre-treatment of original flue gas desulphurization gypsum before actual application.
文摘Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon content and large particle size (>45μm).But it is thought that the rejected ash may have potential uses in chemical stabilization/solidification (S/S) processes which need relatively lower strengths and a lower chemical reactivity.Flue Gas Desulphurisation (FGD) sludge is a by-product of air pollution control equipment in coal fired power plants whose chemical composition is mainly gypsum.As there is no effective usage of both of these two materials,it is of interest to research on the possible activation of rFA using FGD.This paper presents experimental results of a study on the properties of rFA activated by the FGD in rFA-cement pastes.Different percentages of FGD were added into the mix to study the effects of the FGD on the reaction of the rFA blended cement pastes.The results show that FGD takes effect as an activator only at late curing ages.Adding Ca(OH) 2 enhances the effect of FGD on activating the hydration of rFA.Also,10% FGD by weight of rFA is the optimal addition in the rFA-cement pastes.The results of the compressive strength measurements correlate well with the porosity results.
基金supported by the National Key Research and Development Program of China (2017YFB0601805)。
文摘Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances.
文摘The research background and technical features of Baosteel sintering flue gas desulphurization ( FGD)--swirl- jet-absorbing wet limestone-gypsum sintering FGD technology, process and equipment are introduced in this paper. Main contents and achievements of the pilot experiment and the engineering practice of Baosteel FGD are analyzed and discussed systematically. Past engineering practice experiences indicate that Baosteel FGD has the following merits: wide applicability to sintering flue gas features, such as frequently changing temperatures, unstable SO2 concentration, intensively fluctuating flow rates ,etc. ,high pollutants removal efficiency ,low investment and energy consumption; stable and reliable operation ,utilizable byproduct (gypsum), etc. It indicates that Baosteel sintering FGD is of extensive application value for the FGD of large and medium-scaled sintering machines.
文摘The paper first introduces the background and the mechanism of secondary pollution from desulfurization in cement plant. Then, take plant A as an example, using MGGH (media gas-gas heater) to control “white smoke”. MGGH uses heat medium water to heat transfer between the original flue gas and the clean flue gas, without additional heat source, and has obvious economic benefits, which is the inevitable development direction of desulfurization reform of cement kiln system in the future.
基金Funded by National Natural Science Foundation of China(No.22008049)Natural Science Foundation of Hebei Province,China (Nos.B2020202081 and B2018202330)+1 种基金Key Laboratory of Gas Hydrate,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,China (No.E029kf1601)Research Fund Program of Science and Technology of Colleges and Universities of Hebei Province,China (No.QN2019012)。
文摘The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.
文摘Due to coal’s availability and low cost, coal combustion continues to be the United States’ primary energy source. However, coal combustion produces large quantities of waste material. Some coal combustion by-products (CCBs) have chemical and physical characteristics that make them potentially useful as soil amendments. The objectives of this study were to characterize a relatively new, high-calcium dry flue gas desulfurization (DFGD) by-product and compare its agronomic liming potential to a Class-C fly ash (FA) and reagent-grade calcium carbonate (CaCO3). Calcium car-bonate equivalence (CCE), degree of fineness (DOF), and effective neutralizing value (ENV) for each CCB were determined using standard methods. The CCBs and CaCO3 were also incubated with an acidic (~4.5) clay sub-soil at application rates equiva-lent to 0, 0.5, 1, and 2 times the soil’s lime requirement and compared to an una-mended control. Soil pH was then measured periodically during a 40-day incubation. The ENV of 79.4% for the DFGD by-product and 57.3% for the FA were comparable to those of commercially available liming materials, but were significantly lower (P < 0.05) than that of reagent-grade CaCO3. After 40 days of incubation at the 0.5× ap-plication rate, both CCBs raised the pH of the clay soil to only 5.0, while the CaCO3 raised the pH to 6.5. After 40 days at the 1× rate, all three materials had raised the soil pH to between 6.5 and 7.0, although the FA increased the soil pH more slowly than did the other two materials. At the 2× rate, both CCBs increased the soil pH to between 7.5 and 8.0, while the CaCO3 increased the soil pH to only 7.0. Both CCBs appear to be useful as soil liming materials, although care should be taken to avoid over-application, as this may make the soil too alkaline for optimum plant growth.
基金Funded by the National Natural Science Foundation of China(Nos.51208370,51172164)the Specialized Research Fund for the Doctoral Program of Higher Education(Nos.20110072120046,20090072110010)of China
文摘The feasibility of utilization of flue gas desulfurization (FGD) gypsum and Class-C fly ash (CFA) to prepare CFA-based geopolymer were studied. The results showed that geopolymer made from 90% CFA and 10% FGD gypsum (FGDG) which was thermally treated at 800 ℃ for 1 h obtained the better compressive strength of 37.0 MPa. The micro characteristics and structures of the geopolymer samples of CFA and CFA-FGDG were tested by XRD, FT-IR, and SEM-EDXA after these samples cured at 75 ℃ for 8 h followed by 23 ℃ for 28 d. Both the geopolymer samples of CFA and CFA-FGDG have significant asymmetric stretching of A1-O/Si-O bonds and Si-O-Si / Si-O-A1 bending band. In geopolymer sample of CFA-FGDG, a small quantity of lathy products probably being the ettringite wrapped over the spherical fly ash particle, and the concentration of sulfur is much more than that in geopolymer sample of CFA. It is indicated that FGD gypsum may react during alkali-activated and geopolymeric process.
基金Sponsored by the National Natural Science Foundation of China (Grant No 50476050) and the PHD Foundation of NCEPU
文摘In the paper, the gas-liquid two-phase flow performance and desulfurisation performance of the gas-liquid screen scrubber were experimentally studied when limestone was used as absorbent. Experiments were carried out at varying the flue gas velocity and slurry flux in concurrent and countercurrent tower respectively. The experimental results showed that the flow resistance of absorber increased rapidly with an increase of the flue gas velocity whether in concurrent or in countereurrent tower, and the up trend of the flow resistance in the cotmtercurrent tower was higher than those in the concurrent one. The influence of the flue gas velocity on the flow resistance of absorber was more than those of the slurry flux density. Whether in the concurrent tower or in the cotmtercurrent one, increasing the flue gas velocity or the slurry flux density would enhance the desulphurization efficiency. The influence of the slurry flux density on the desulfurisation efficiency was greater than those of the flue gas velocity.
文摘With the revision of emission standards, deep desulphurization and DeNO X is needed in circulating fluidized bed (CFB) boilers. The operation of the first set of 300-MW CFB boiler plus limestone/gypsum wet flue gas desulphurization (FGD) system in the world shows that deep desulphurization and DeNO X of CFB boilers has higher SO2 removal efficiency at a lower Ca/S ratio compared with traditional inner desulphurization mode. It can meet the increasingly rigid emission standards, and is suitable for more fuels. Deep desulphurization and DeNO X can also achieve a highly-efficient high-temperature CFB boiler that can not only achieve inner desulphurization and low NO X emission, but benefits low-grade, high sulfur content fuels as well. Research of deep desulphurization and DeNO X will be a developing direction for CFB boilers.
文摘The removal of SO 2 from flue gas by pulsed corona discharge in presence of ammonia was experimentally investigated. The results showed that the SO 2 removal mainly depends on thermal reaction of SO 2 with NH 3 and enhancements of 0%—25% by pulsed corona discharge in the range of the specific energy 0—5 Wh/Nm 3. The aerosol mass concentration, mainly composed of ammonium sulfate, increased with specific energy dissipated into the reactor. With an initial concentration of 2000—2100 ppmv SO 2 and energy consumption of 3 Wh/Nm 3, when a stoichiometric amount of ammonia is injected, the removal efficiency of SO 2 and percentage of ammonium sulfates in reaction products are all ≥80%. The collection efficiency of the reactor for aerosol is about 74% at a flue gas temperature of 60 to 65℃ and a water vapor content of 9% to 11% volume.
文摘An experimental study has been performed systematically on flue gas desulphurization by using circulating fluidized bed. The relationship, between desulphurization efficiency and the parameters of thermodynamics and chemistry, was investigated basically. It is shown that the bed temperature and the vapor partial pressure in the bed are the important parameters that influence the desulphurization efficiency. The closer the bed temperature to the dew point and the higher the vapor partial pressure, the higher is the desulphurization efficiency. With increasing of Ca/S. the desulphurization efficiency ascends. Comparing with different operating methods, the optimum method has been found.
基金Supported by the National Natural Science Foundation of China (No.50244012) and the Natural Science Foundation of Shaanxi Education Department (No.02JC37).
文摘Using a sonochemical reactor designed by the authors,the process of removing sulfur dioxide from cit- rate solution simulating the flue gas desulfurization was studied.The influence of ultrasonic frequency,ultrasonic power,reaction temperature,stirring speed,inert gases,initial concentration of sulfur dioxide and concentration of citrate on the efficiency of sulfur dioxide desorption,the stability of citrate solution and the concentration of sulfate radical was examined systematically.By comparing the desorption of sulfur dioxide with and without ultrasonifica- tion,it was concluded that(1)lower ultrasonic frequency results in a better degassing efficiency;(2)the use of ul- trasonification in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in some condi- tions,without changing the essence of chemical reactions;(3)sparging inert gas into the liquid can lower the vis- cosity of solution and the cavitating threshold,and raise the desorption efficiency.These results demonstrate a technical way for deep desorption of sulfur dioxide and provide the fundamental data for future industrial disposal of sulfur dioxide.
基金Projects(50874087,50978212) supported by the National Natural Science Foundation of China
文摘The absorption of sulfur dioxide in simulated flue gas by using liquid-containing membrane was investigated.The process of sulfur dioxide desorption from the absorbent of citrate solution was explored.The influence of the gas-phase,and the liquid-phase on absorption efficiency of sulfur dioxide and the influence of ultrasonic frequency,ultrasonic power and stirring speed on desorption efficiency of sulfur dioxide were examined.The results indicate that the absorption efficiency decreases with increasing flow velocity and sulfur dioxide content in gas-phase,and can be improved by increasing the concentration and the pH value of citrate solution.It is concluded that lower ultrasonic frequency results in a better degassing efficiency.The using of ultrasound in desorbing sulfur dioxide from citrate solution improves the desorbing efficiency in the some conditions,without changing the essence of chemical reaction.
基金Financial support for this project was provided by the U.S.Department of Agriculture (No. 6445-12630-003-00D)
文摘The mercury flux in soils was investigated, which were amended by gypsums from flue gas desulphurization (FGD) units of coal- fired power plants. Studies have been carried out in confined greenhouses using FGD gypsum treated soils. Major research focus is uptakes of mercury by plants, and emission of mercury into the atmosphere under varying application rates of FGD gypsum, simulating rainfall irrigations, soils, and plants types. Higher FGD gypsum application rates generally led to higher mercury concentrations in the soils, the increased mercury emissions into the atmosphere, and the increased mercury contents in plants (especially in roots and leaves). Soil properties and plant species can play important roles in mercury transports. Some plants, such as tall fescue, were able to prevent mercury from atmospheric emission and infiltration in the soil. Mercury concentration in the stem of plants was found to be increased and then leveled off upon increasing FGD gypsum application. However, mercury in roots and leaves was generally increased upon increasing FGD gypsum application rates. Some mercury was likely absorbed by leaves of plants from emitted mercury in the atmosphere.
基金Financial support from the National Key R&D Program of China(No.2017YFB0601805)。
文摘Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.
基金financially supported by the National Natural Science Foundation of China (Nos.U1260101 and 51504003)the Project of Science and Technology Development of Anhui Province,China (No.1501041126)
文摘The iron ore sintering process is the main source of SO_2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO_2 emissions in the flue gas in the iron ore sintering process by adding urea at a given distance from the sintering grate bar. In this paper, a pilot-scale experiment was carried out in a commercial sintering plant. The results showed that, compared to the SO_2 concentration in flue gas without urea addition, the SO_2 concentration decreased substantially from 694.2 to 108.0 mg/m^3 when 0.10wt% urea was added. NH_3 decomposed by urea reacted with SO_2 to produce(NH_4)_2SO_4, decreasing the SO_2 concentration in the flue gas.
文摘Among the technologies to control SO2 emission from coal-fired boilers, the dry flue gas desulphurization (FGD) method, with appropriate modifications, has been identified as a candidate for realizing high SO2 removal efficiency to meet both technical and economic requirements, and for making the best quality byproduct gypsum as a useful additive for improving alkali soil. Among the possible modifications two major factors have been selected for study: (1) favorable chemical reaction kinetics at elevated temperatures and the sorbent characteristics; (2) enhanced diffusion of SO2 to the surface and within the pores of sorbent particles that are closely related to gas-solid two-phase flow patterns caused by flue gas and sorbent particles in the reactor. To achieve an ideal pore structure, a sorbent was prepared through hydration reaction by mixing lime and fly ash collected from bag house of power plants to form a slurry, which was first dewatered and then dried. The dry sorbent was found capable of rapid conversion of 70% of its calcium content at 700℃, reaching a desulphurization efficiency of over 90% at a Ca/S ratio of 1.3. Experiments confirmed that the diffusion effect of SO2 is an important factor and that gas-solid two-phase flow plays a key role to mixing and contact between SO2 and sorbent particles. For designing the FDG reactor, a new theoretical drag model was developed by combination of CFD with the Energy Minimization Multi-Scale (EMMS) theory for dense fluidi-zation systems. This new drag model was first verified by comparing calculated and measured drag values, and was then implemented in simulation of gas-solid two-phase flow in two circulating fluidized beds with different sizes and flow parameters. One riser has diameter and height of 0.15 m×3m and another one 0.2m×14.2m. Their superficial gas velocities are 4 and 5.2 m·s-1, respectively, and the circulating rate 53 and 489 kg·(m-2·s-1). FCC particles were used in both cases. The results show that not only the static pressure drop along the riser height, but also radial distributions of particle volume fraction have been very well predicted in comparison with experiments. The new drag model is expected to shed more light on the further improvement of SO2 diffusion to solid sorbent and optimization of reactor structure.
文摘The need to operate a boiler efficiently in today’s environment is at the top of many plant owners and operators lists. Unfortunately, operating a boiler efficiently and meeting local emission regulations do not always go hand in hand. However, advances in boiler system design and technology have made this a much more achievable task. The potential for energy improvements and cost savings is substantial when considered that most boilers operating today are performing at efficiencies that are less than 70 percent. The performance calculation and rectification measures are essential for performance evaluation and efficiency enhancement. Since the efficiency decreases from time to time it is required to find out the losses occurring in boiler using proper methodology. The environmental issues and economy are the secondary factors to be considered after finding the losses. Due to increase in fuel price and demand in more energy requirement in everyday life, proper utilization of materials and resources are necessary. This present deals with the aim of estimating the heat losses occurring in thermal power plant boilers and hence finding suitable ways for reducing it, hence allowing plants to achieve more performance, sustainability and cost-effective maintenance operation of a steam system.