Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou...Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.展开更多
The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combination...The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combinations,including pharmacokinetics-guided dose optimization and toxicology studies of first-and second-line anti-TB drugs have also been introduced and recommended.Liquid chromatography-mass spectrometry(LC-MS)has arguably become the gold standard in the analysis of both endo-and exo-genous compounds.This technique has been applied successfully not only for therapeutic drug monitoring(TDM)but also for pharmacometabolomics analysis.TDM improves the effectiveness of treatment,reduces adverse drug reactions,and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window.Based on TDM,the dose would be optimized individually to achieve favorable outcomes.Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs,aiding in the discovery of potential biomarkers for TB diagnostics,treatment monitoring,and outcome evaluation.This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades.Besides,we discussed the advantages and disadvantages of this technique in practical use.The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted.Lastly,we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies(pharmacometrics,drug and vaccine developments,machine learning/artificial intelligence,among others)to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.展开更多
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods...Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.展开更多
The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the sout...Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal je...BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal jejunal bypass(DJB)surgery significantly improves brain glucose metabolism in T2DM rats,the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear.AIM To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats.METHODS A T2DM rat model was induced via a high-glucose and high-fat diet,combined with a low-dose streptozotocin injection.T2DM rats were divided into DJB operation and Sham operation groups.DJB surgical intervention was carried out on T2DM rats.The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis.Proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry,quantitative real-time PCR,Western blotting,and immunofluorescence.RESULTS Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery,compared to the T2DM-Sham groups of rats.Oxidative stress-related proteins(glucagon-like peptide 1 receptor,Nrf2,and HO-1)were significantly increased(P<0.05)in the hypothalamus of rats with T2DM after DJB surgery.DJB surgery significantly reduced(P<0.05)hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin(IL)-1βand IL-6.DJB surgery significantly reduced(P<0.05)the expression of factors related to neuronal injury(glial fibrillary acidic protein and Caspase-3)in the hypothalamus of T2DM rats and upregulated(P<0.05)the expression of neuroprotective factors(C-fos,Ki67,Bcl-2,and BDNF),thereby reducing hypothalamic injury in T2DM rats.CONCLUSION DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.展开更多
Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicato...Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These...Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.展开更多
Since its approval by the Food and Drug Administration in 2011,transcatheter aortic valve implantation(TAVI)has rapidly evolved to become the preferred ultimate intervention for high-and intermediate-risk patients wit...Since its approval by the Food and Drug Administration in 2011,transcatheter aortic valve implantation(TAVI)has rapidly evolved to become the preferred ultimate intervention for high-and intermediate-risk patients with severe symptomatic aortic stenosis.[1]This is due to its non-open-heart,minimally invasive and off-pump advantages.[1]Nevertheless,as a result of the frequent frailty and comorbidity profiles of patients undergoing TAVI,such as advanced cardiac dysfunction and extensive coronary artery disease,or technically difficult anatomy for the procedure itself,[2-4]it is common for these patients to experience critical circulatory collapse perioperatively.These factors are linked to elevated mortality rates,necessitating suitable mechanical circulatory support(MCS)to reverse the disastrous situations.[5]展开更多
Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar comp...Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar complications from either if not monitored and treated accordingly. Through the Diabetes Control and Complications Trial, it was found that a significant way to monitor diabetes is through glucose levels in a person’s body. The research surrounding glucose monitoring dates to the mid-1800s, with the first successful reagent for glucose testing being developed in 1908. Since then, glucose sensing has become one of the most rapidly growing areas of research and development in biosensor technology, creating a competitive market for more advanced, accurate, and convenient glucose monitoring. This article reviews the history of biosensors used for glucose monitoring, and major advancements in biosensor technology to enhance performance and improve quality of life for patients with diabetes.展开更多
Objective: This case report aimed to demonstrate a possible neuromuscular effect of Latarjet nerves transection or truncal vagotomy, in association with sleeve gastrectomy plus antrojejunostomy, in order to reproduce ...Objective: This case report aimed to demonstrate a possible neuromuscular effect of Latarjet nerves transection or truncal vagotomy, in association with sleeve gastrectomy plus antrojejunostomy, in order to reproduce a Roux-en-Y gastric bypass (RYGB) mechanistic principles, in patients with previous Sleeve Gastrectomy (SG) who had had weight regain, with or without concomitant gastroesophageal reflux disease (GERD). Background: Sleeve gastrectomy (SG) is one of the most frequently performed bariatric operations worldwide. Nevertheless, weight regain and gastroesophageal reflux disease (GERD) have been consistently demonstrated, in association with this technique, which may require a revisional procedure. RYGB is an option in such a situation but, implies in gastrointestinal exclusions, which represents a shortcoming of this revision. Surpassing this inconvenient would be of great value for the patients. Methods: We describe herein two cases of SG revision for weight regain and GERD, with a follow-up of one year. Gastroesophageal reflux disease was evaluated by validated questionnaire, upper endoscopy, seriography, high resolution manometry (HRM) and impedance pHmetry (I-pHmetry), in the pre and postoperative periods. A re-Sleeve Gastrectomy with antrojejunal anastomosis was done in both cases, after informed consents. The Latarjet nerves were transected in one case, due to a bleeding in the left gastric vessels and a truncal vagotomy was required in the other, to appropriately treat an associated hiatal hernia. Results: In the postoperative evaluation it was observed a pyloric spasm in both cases, during seriography and endoscopy, kept until the one-year follow-up. There was unidirectional contrast flow to the gastrointestinal anastomosis, filling the jejunal limb, in radiologic contrast study. No contrast passed through the pylorus. Nonetheless, the duodenum was kept endoscopically accessible. In the one-year evaluation, weight loss was adequate and GERD resolution was obtained in both cases, confirmed by endoscopic and functional esophageal assessment, together with symptoms questionnaire. Conclusion: The association of Latarjet nerves sectioning or truncal vagotomy with re-sleeve gastrectomy plus gastrointestinal anastomosis (antrojejunal), in a revision for a failed sleeve, can represent a technical approach, to reproduce RYGB results, without exclusions and with duodenum endoscopic accessibility maintenance. It maybe could be applied for primary surgeries. Additional studies are necessary to confirm this hypothesis.展开更多
Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agric...Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access.展开更多
Background: Following coronary artery bypass grafting (CABG), delirium emerges as a prevalent complication. This study aimed to assess the correlation between elevated serum cortisol levels and the occurrence of posto...Background: Following coronary artery bypass grafting (CABG), delirium emerges as a prevalent complication. This study aimed to assess the correlation between elevated serum cortisol levels and the occurrence of postoperative delirium subsequent to off-pump CABG. Methods: Conducted in the Department of Cardiac Surgery at BSMMU from October 2020 to September 2022, this comparative cross-sectional study included a total of 44 participants. Subjects, meeting specific criteria, were purposefully assigned to two groups based on off-pump CABG. Group A (n = 22) consisted of patients with normal serum cortisol levels, while Group B (n = 22) comprised individuals with high serum cortisol levels on the first postoperative day. Delirium onset was assessed at the bedside in the ICU on the 1st, 2nd, 3rd, 4th, and 5th postoperative days using standard tools, namely the Richmond Agitation Sedation score (RASS) and The Confusion Assessment Method (CAM-ICU). Data were collected based on the presence or absence of delirium. Statistical analysis utilized SPSS version 26.0, employing an independent Student’s t-test for continuous data and chi-square and Fischer’s exact test for categorical data. A p-value ≤ 0.05 was considered statistically significant. Results: Group-A had a mean age of 54.50 ± 17.97, and Group-B had a mean age of 55.22 ± 15.45, both with a male predominance (81.81% and 86.36% respectively). The mean serum cortisol level was significantly higher in Group B (829.71 ± vs. 389.98 ± 68.77). Postoperative delirium occurred in 27.3% of Group B patients, statistically significant compared to the 4.5% in Group A. However, patients in Group B who developed delirium experienced significantly longer postoperative ICU and hospital stays (79.29 ± 12.27 vs. 11.44 ± 2.85, p ≤ 0.05). There was one mortality in Group B, which was statistically not significant. Conclusion: This study observed a significant association between elevated serum cortisol levels in the postoperative period and the occurrence of postoperative delirium after off-pump coronary artery bypass grafting.展开更多
Small-break superposed station blackout(SBO)accidents are the basic design accidents of nuclear power plants.Under the condition of a small break in the cold leg,SBO further increases the severity of the accident,and ...Small-break superposed station blackout(SBO)accidents are the basic design accidents of nuclear power plants.Under the condition of a small break in the cold leg,SBO further increases the severity of the accident,and the steam bypass discharg-ing system(GCT)in the second circuit can play an important role in guaranteeing core safety.To explore the influence of the GCT on the thermal-hydraulic characteristics of the primary circuit,RELAP5 software was used to establish a numerical model based on a typical pressurized water reactor nuclear power plant.Five different small breaks in the cold-leg super-posed SBO were selected,and the impact of the GCT operation on the transient response characteristics of the primary and secondary circuit systems was analyzed.The results show that the GCT plays an indispensable role in core heat removal during an accident;otherwise,core safety cannot be guaranteed.The GCT was used in conjunction with the primary safety injection system during the placement process.When the break diameter was greater than a certain critical value,the core cooling rate could not be guaranteed to be less than 100 K/h;however,the core remained in a safe state.展开更多
[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the co...[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the core functions of the system were designed comprehensively.According to the design function of the automatic monitoring system,the slope automatic monitoring system was constructed.Besides,in accordance with the actual situation of the slope,the monitoring frequency of slopes was set scientifically,and the key indicators such as rainfall,deep displacement and surface displacement of the slopes were monitored in an all-round and multi-angle way.[Results]During the monitoring period,the overall condition of the slope remained good,and no landslides or other geological disasters occurred.At the same time,the overall rainfall in the slope area remained low.In terms of monitoring data,the horizontal displacement and settlement of the slopes increased first and then tended to be stable.Specifically,the maximum horizontal displacement during the monitoring period was 22.74 mm,while the maximum settlement was 18.65 mm.[Conclusions]The automatic slope monitoring system has obtained remarkable achievements in practical application.It not only improves the accuracy and efficiency of slope stability monitoring,but also provides valuable reference experience for similar projects.展开更多
The present study aimed to dynamically observe the segmental and global myocardial movements of the left ventricle during coronary artery bypass grafting by transesophageal speckle-tracking echocardiography,and to ass...The present study aimed to dynamically observe the segmental and global myocardial movements of the left ventricle during coronary artery bypass grafting by transesophageal speckle-tracking echocardiography,and to assess the effect of sevoflurane on cardiac function.Sixty-four patients scheduled for the off-pump coronary artery bypass grafting were randomly divided into a sevoflurane-based anesthesia(AS)group and a propofolbased total intravenous anesthesia(AA)group.The AS group demonstrated a higher absolute value of left ventricular global longitudinal strain than that of the AA group at both T1(after harvesting all grafts and before coronary anastomosis)and T_(2)(30 min after completing all coronary anastomoses)(P<0.05).Moreover,strain improvement in the segment with the highest preoperative strain was significantly reduced in the AS group,compared with the AA group at both T1 and T_(2)(P<0.01).The flow of the left internal mammary artery-left anterior descending artery graft was superior,and the postoperative concentration of troponin T decreased rapidly in the AS group,compared with the AA group(P<0.05).Compared with total intravenous anesthesia,sevoflurane resulted in a significantly higher global longitudinal strain,stroke volume,and cardiac output.Sevoflurane also led to an amelioration in the condition of the arterial graft.Furthermore,sevoflurane significantly reduced strain improvement in the segmental myocardium with a high preoperative strain value.The findings need to be replicated in larger studies.展开更多
This is a review of the first 10 coronary artery bypass surgeries performed by the local team. The mean age was 62 years old [45 - 74]. The patients were predominantly male, with a M/F ratio of 4:1. Cardiovascular ris...This is a review of the first 10 coronary artery bypass surgeries performed by the local team. The mean age was 62 years old [45 - 74]. The patients were predominantly male, with a M/F ratio of 4:1. Cardiovascular risk factors were mainly myocardial infarction (MI) (60%), hypertension (50%), obesity (40%) and diabetes (30%), with at least two risk factors per patient. Angina was the main symptom (80%). The average time from presentation to surgery was 8 months. The mean Euroscore 2 was 2.92 ± 1.65 [1.33 - 6.60]. Coronary angiography revealed an average of 2 lesions per patient, with 3-vessel involvement in 70% of cases: the Interventricular artery (IVA) (100%), the right coronary artery (90%) and the circumflex artery (70%). On echocardiography, the mean Left ventricular ejection fraction (LVEF) was 59% [33% - 76%]. All patients underwent median sternotomy with bypass grafting. The average duration of the cardiopulmonary bypass was 150 min [46 - 275 min];that of aortic clamping, 120 min [43 - 232 min]. The grafts used were internal thoracic artery (ITA) in 100% of cases (80% on the left and 20% on the right), and the great saphenous vein (GSV) in 60% of cases (50% on the left and 10 on the right). Double bypass was performed in 60% of cases, single bypass in 30% and triple bypass in 10%. The bypasses were performed on the IVA (100%), the middle lateral of the circumflex (30%) and the bisector (20%). The average time to extubation was 11 hours and the length of stay in the intensive care unit was 7 days [03 - 17 days]. One patient had a reoperation on Day 0 post-op. The average hospital stay was 13 days [06 - 27 days]. Complications occurred in nine of the patients (90%), with a predominance of infectious and neurological complications. Overall operative mortality was 3%, all in intensive care.展开更多
BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies inve...BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies investigating its accuracy has increased.However,its accuracy has not been investigated in highland populations in China.AIM To evaluate measurements recorded using the FreeStyle Libre FGM system compared with capillary blood glucose measured using the enzyme electrode method in patients with type 2 diabetes(T2D)who had migrated within 3 mo from highlands to plains.METHODS Overall,68 patients with T2D,selected from those who had recently migrated from highlands to plains(within 3 mo),were hospitalized at the Department of Endocrinology from August to October 2017 and underwent continuous glucose monitoring(CGM)with the FreeStyle Libre FGM system for 14 d.Throughout the study period,fingertip capillary blood glucose was measured daily using the enzyme electrode method(Super GL,China),and blood glucose levels were read from the scanning probe during fasting and 2 h after all three meals.Moreover,the time interval between reading the data from the scanning probe and collecting fingertip capillary blood was controlled to<5 min.The accuracy of the FGM system was evaluated according to the CGM guidelines.Subsequently,the factors influencing the mean absolute relative difference(MARD)of this system were analyzed by a multiple linear regression method.RESULTS Pearson’s correlation analysis showed that the fingertip and scanned glucose levels were positively correlated(R=0.86,P=0.00).The aggregated MARD of scanned glucose was 14.28±13.40%.Parker's error analysis showed that 99.30%of the data pairs were located in areas A and B.According to the probe wear time of the FreeStyle Libre FGM system,MARD_(1 d) and MARD_(2-14 d) were 16.55%and 14.35%,respectively(t=1.23,P=0.22).Multiple stepwise regression analysis showed that MARD did not correlate with blood glucose when the largest amplitude of glycemic excursion(LAGE)was<5.80 mmol/L but negatively correlated with blood glucose when the LAGE was≥5.80 mmol/L.CONCLUSION The FreeStyle Libre FGM system has good accuracy in patients with T2D who had recently migrated from highlands to plains.This system might be ideal for avoiding the effects of high hematocrit on blood glucose monitoring in populations that recently migrated to plains.MARD is mainly influenced by glucose levels and fluctuations,and the accuracy of the system is higher when the blood glucose fluctuation is small.In case of higher blood glucose level fluctuations,deviation in the scanned glucose levels is the highest at extremely low blood glucose levels.展开更多
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul...Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.展开更多
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY23H050005and Zhejiang Medical Technology Project,No.2022RC009.
文摘Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.
基金sponsored by the National Research Foundation of Korea(NRF)Grant funded by the Korean government(MSIT)(Grant No.:2018R1A5A2021242).
文摘The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combinations,including pharmacokinetics-guided dose optimization and toxicology studies of first-and second-line anti-TB drugs have also been introduced and recommended.Liquid chromatography-mass spectrometry(LC-MS)has arguably become the gold standard in the analysis of both endo-and exo-genous compounds.This technique has been applied successfully not only for therapeutic drug monitoring(TDM)but also for pharmacometabolomics analysis.TDM improves the effectiveness of treatment,reduces adverse drug reactions,and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window.Based on TDM,the dose would be optimized individually to achieve favorable outcomes.Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs,aiding in the discovery of potential biomarkers for TB diagnostics,treatment monitoring,and outcome evaluation.This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades.Besides,we discussed the advantages and disadvantages of this technique in practical use.The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted.Lastly,we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies(pharmacometrics,drug and vaccine developments,machine learning/artificial intelligence,among others)to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.
基金The authors gratefully acknowledge the financial support pro-vided by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.41907232)the National Science Fund for Distinguished Young Scholars of China(Grant No.42225702)the State Key Program of National Natural Science Foundation of China(Grant No.41230636).
文摘Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
基金the financial support of the National Key R&D Program of China(2021YFC3000701)the China Seismic Experimental Site in Sichuan-Yunnan(CSES-SY)。
文摘Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well.
基金Supported by the Natural Science Foundation of China,No.82070856the Science and Technology Development Plan of Shandong Medical and Health Science,No.202102040075+1 种基金Scientific Research Plan of Weifang Health Commission,No.WFWSJK-2022-010 and No.WFWSJK-2022-008Weifang Science and Technology Development Plan,No.2021YX071 and No.2021YX070.
文摘BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal jejunal bypass(DJB)surgery significantly improves brain glucose metabolism in T2DM rats,the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear.AIM To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats.METHODS A T2DM rat model was induced via a high-glucose and high-fat diet,combined with a low-dose streptozotocin injection.T2DM rats were divided into DJB operation and Sham operation groups.DJB surgical intervention was carried out on T2DM rats.The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis.Proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry,quantitative real-time PCR,Western blotting,and immunofluorescence.RESULTS Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery,compared to the T2DM-Sham groups of rats.Oxidative stress-related proteins(glucagon-like peptide 1 receptor,Nrf2,and HO-1)were significantly increased(P<0.05)in the hypothalamus of rats with T2DM after DJB surgery.DJB surgery significantly reduced(P<0.05)hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin(IL)-1βand IL-6.DJB surgery significantly reduced(P<0.05)the expression of factors related to neuronal injury(glial fibrillary acidic protein and Caspase-3)in the hypothalamus of T2DM rats and upregulated(P<0.05)the expression of neuroprotective factors(C-fos,Ki67,Bcl-2,and BDNF),thereby reducing hypothalamic injury in T2DM rats.CONCLUSION DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.
基金National Natural Science Foundation of China(Nos.42171444,42301516)Beijing Natural Science Foundation Project-Municipal Education Commission Joint Fund Project(No.KZ202110016021)Beijing Municipal Education Commission Scientific Research Project-Science and Technology Plan General Project(No.KM202110016005).
文摘Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金support of the National Natural Science Foundation of China(Grant Nos.U2240221 and 41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.
基金supported by the Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support(ZYLX202111,to XTH)Beijing Hospitals Authority“Ascent Plan”(FDL20190601,to XTH)+2 种基金Young Elite Scientists Sponsorship Program by CAST(2022QNRC001,to LSW)National Natural Science Foundation of China(82200433,to LSW)Beijing Hospitals Authority Youth Programme(QML20230602,to LSW).
文摘Since its approval by the Food and Drug Administration in 2011,transcatheter aortic valve implantation(TAVI)has rapidly evolved to become the preferred ultimate intervention for high-and intermediate-risk patients with severe symptomatic aortic stenosis.[1]This is due to its non-open-heart,minimally invasive and off-pump advantages.[1]Nevertheless,as a result of the frequent frailty and comorbidity profiles of patients undergoing TAVI,such as advanced cardiac dysfunction and extensive coronary artery disease,or technically difficult anatomy for the procedure itself,[2-4]it is common for these patients to experience critical circulatory collapse perioperatively.These factors are linked to elevated mortality rates,necessitating suitable mechanical circulatory support(MCS)to reverse the disastrous situations.[5]
文摘Diabetes is a condition that can come to the surface at any point throughout a person’s life. Although Type 1 and Type 2 Diabetes have different triggers that cause them to arise, a person can experience similar complications from either if not monitored and treated accordingly. Through the Diabetes Control and Complications Trial, it was found that a significant way to monitor diabetes is through glucose levels in a person’s body. The research surrounding glucose monitoring dates to the mid-1800s, with the first successful reagent for glucose testing being developed in 1908. Since then, glucose sensing has become one of the most rapidly growing areas of research and development in biosensor technology, creating a competitive market for more advanced, accurate, and convenient glucose monitoring. This article reviews the history of biosensors used for glucose monitoring, and major advancements in biosensor technology to enhance performance and improve quality of life for patients with diabetes.
文摘Objective: This case report aimed to demonstrate a possible neuromuscular effect of Latarjet nerves transection or truncal vagotomy, in association with sleeve gastrectomy plus antrojejunostomy, in order to reproduce a Roux-en-Y gastric bypass (RYGB) mechanistic principles, in patients with previous Sleeve Gastrectomy (SG) who had had weight regain, with or without concomitant gastroesophageal reflux disease (GERD). Background: Sleeve gastrectomy (SG) is one of the most frequently performed bariatric operations worldwide. Nevertheless, weight regain and gastroesophageal reflux disease (GERD) have been consistently demonstrated, in association with this technique, which may require a revisional procedure. RYGB is an option in such a situation but, implies in gastrointestinal exclusions, which represents a shortcoming of this revision. Surpassing this inconvenient would be of great value for the patients. Methods: We describe herein two cases of SG revision for weight regain and GERD, with a follow-up of one year. Gastroesophageal reflux disease was evaluated by validated questionnaire, upper endoscopy, seriography, high resolution manometry (HRM) and impedance pHmetry (I-pHmetry), in the pre and postoperative periods. A re-Sleeve Gastrectomy with antrojejunal anastomosis was done in both cases, after informed consents. The Latarjet nerves were transected in one case, due to a bleeding in the left gastric vessels and a truncal vagotomy was required in the other, to appropriately treat an associated hiatal hernia. Results: In the postoperative evaluation it was observed a pyloric spasm in both cases, during seriography and endoscopy, kept until the one-year follow-up. There was unidirectional contrast flow to the gastrointestinal anastomosis, filling the jejunal limb, in radiologic contrast study. No contrast passed through the pylorus. Nonetheless, the duodenum was kept endoscopically accessible. In the one-year evaluation, weight loss was adequate and GERD resolution was obtained in both cases, confirmed by endoscopic and functional esophageal assessment, together with symptoms questionnaire. Conclusion: The association of Latarjet nerves sectioning or truncal vagotomy with re-sleeve gastrectomy plus gastrointestinal anastomosis (antrojejunal), in a revision for a failed sleeve, can represent a technical approach, to reproduce RYGB results, without exclusions and with duodenum endoscopic accessibility maintenance. It maybe could be applied for primary surgeries. Additional studies are necessary to confirm this hypothesis.
基金supported by the budget of GIC project at Okayama University.
文摘Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access.
文摘Background: Following coronary artery bypass grafting (CABG), delirium emerges as a prevalent complication. This study aimed to assess the correlation between elevated serum cortisol levels and the occurrence of postoperative delirium subsequent to off-pump CABG. Methods: Conducted in the Department of Cardiac Surgery at BSMMU from October 2020 to September 2022, this comparative cross-sectional study included a total of 44 participants. Subjects, meeting specific criteria, were purposefully assigned to two groups based on off-pump CABG. Group A (n = 22) consisted of patients with normal serum cortisol levels, while Group B (n = 22) comprised individuals with high serum cortisol levels on the first postoperative day. Delirium onset was assessed at the bedside in the ICU on the 1st, 2nd, 3rd, 4th, and 5th postoperative days using standard tools, namely the Richmond Agitation Sedation score (RASS) and The Confusion Assessment Method (CAM-ICU). Data were collected based on the presence or absence of delirium. Statistical analysis utilized SPSS version 26.0, employing an independent Student’s t-test for continuous data and chi-square and Fischer’s exact test for categorical data. A p-value ≤ 0.05 was considered statistically significant. Results: Group-A had a mean age of 54.50 ± 17.97, and Group-B had a mean age of 55.22 ± 15.45, both with a male predominance (81.81% and 86.36% respectively). The mean serum cortisol level was significantly higher in Group B (829.71 ± vs. 389.98 ± 68.77). Postoperative delirium occurred in 27.3% of Group B patients, statistically significant compared to the 4.5% in Group A. However, patients in Group B who developed delirium experienced significantly longer postoperative ICU and hospital stays (79.29 ± 12.27 vs. 11.44 ± 2.85, p ≤ 0.05). There was one mortality in Group B, which was statistically not significant. Conclusion: This study observed a significant association between elevated serum cortisol levels in the postoperative period and the occurrence of postoperative delirium after off-pump coronary artery bypass grafting.
文摘Small-break superposed station blackout(SBO)accidents are the basic design accidents of nuclear power plants.Under the condition of a small break in the cold leg,SBO further increases the severity of the accident,and the steam bypass discharg-ing system(GCT)in the second circuit can play an important role in guaranteeing core safety.To explore the influence of the GCT on the thermal-hydraulic characteristics of the primary circuit,RELAP5 software was used to establish a numerical model based on a typical pressurized water reactor nuclear power plant.Five different small breaks in the cold-leg super-posed SBO were selected,and the impact of the GCT operation on the transient response characteristics of the primary and secondary circuit systems was analyzed.The results show that the GCT plays an indispensable role in core heat removal during an accident;otherwise,core safety cannot be guaranteed.The GCT was used in conjunction with the primary safety injection system during the placement process.When the break diameter was greater than a certain critical value,the core cooling rate could not be guaranteed to be less than 100 K/h;however,the core remained in a safe state.
文摘[Objectives]To monitor the stability of open-pit coal mine slopes in real time and ensure the safety of coal mine production.[Methods]The automatic monitoring system of coal mine slope was explored in depth,and the core functions of the system were designed comprehensively.According to the design function of the automatic monitoring system,the slope automatic monitoring system was constructed.Besides,in accordance with the actual situation of the slope,the monitoring frequency of slopes was set scientifically,and the key indicators such as rainfall,deep displacement and surface displacement of the slopes were monitored in an all-round and multi-angle way.[Results]During the monitoring period,the overall condition of the slope remained good,and no landslides or other geological disasters occurred.At the same time,the overall rainfall in the slope area remained low.In terms of monitoring data,the horizontal displacement and settlement of the slopes increased first and then tended to be stable.Specifically,the maximum horizontal displacement during the monitoring period was 22.74 mm,while the maximum settlement was 18.65 mm.[Conclusions]The automatic slope monitoring system has obtained remarkable achievements in practical application.It not only improves the accuracy and efficiency of slope stability monitoring,but also provides valuable reference experience for similar projects.
基金supported by Jiangsu Province Hospital(the First Affiliated Hospital of Nanjing Medical University)Clinical Capacity Enhancement and was awarded to the first author,Chanjuan Gong(Grant No.JSPH-MC-2022-4).
文摘The present study aimed to dynamically observe the segmental and global myocardial movements of the left ventricle during coronary artery bypass grafting by transesophageal speckle-tracking echocardiography,and to assess the effect of sevoflurane on cardiac function.Sixty-four patients scheduled for the off-pump coronary artery bypass grafting were randomly divided into a sevoflurane-based anesthesia(AS)group and a propofolbased total intravenous anesthesia(AA)group.The AS group demonstrated a higher absolute value of left ventricular global longitudinal strain than that of the AA group at both T1(after harvesting all grafts and before coronary anastomosis)and T_(2)(30 min after completing all coronary anastomoses)(P<0.05).Moreover,strain improvement in the segment with the highest preoperative strain was significantly reduced in the AS group,compared with the AA group at both T1 and T_(2)(P<0.01).The flow of the left internal mammary artery-left anterior descending artery graft was superior,and the postoperative concentration of troponin T decreased rapidly in the AS group,compared with the AA group(P<0.05).Compared with total intravenous anesthesia,sevoflurane resulted in a significantly higher global longitudinal strain,stroke volume,and cardiac output.Sevoflurane also led to an amelioration in the condition of the arterial graft.Furthermore,sevoflurane significantly reduced strain improvement in the segmental myocardium with a high preoperative strain value.The findings need to be replicated in larger studies.
文摘This is a review of the first 10 coronary artery bypass surgeries performed by the local team. The mean age was 62 years old [45 - 74]. The patients were predominantly male, with a M/F ratio of 4:1. Cardiovascular risk factors were mainly myocardial infarction (MI) (60%), hypertension (50%), obesity (40%) and diabetes (30%), with at least two risk factors per patient. Angina was the main symptom (80%). The average time from presentation to surgery was 8 months. The mean Euroscore 2 was 2.92 ± 1.65 [1.33 - 6.60]. Coronary angiography revealed an average of 2 lesions per patient, with 3-vessel involvement in 70% of cases: the Interventricular artery (IVA) (100%), the right coronary artery (90%) and the circumflex artery (70%). On echocardiography, the mean Left ventricular ejection fraction (LVEF) was 59% [33% - 76%]. All patients underwent median sternotomy with bypass grafting. The average duration of the cardiopulmonary bypass was 150 min [46 - 275 min];that of aortic clamping, 120 min [43 - 232 min]. The grafts used were internal thoracic artery (ITA) in 100% of cases (80% on the left and 20% on the right), and the great saphenous vein (GSV) in 60% of cases (50% on the left and 10 on the right). Double bypass was performed in 60% of cases, single bypass in 30% and triple bypass in 10%. The bypasses were performed on the IVA (100%), the middle lateral of the circumflex (30%) and the bisector (20%). The average time to extubation was 11 hours and the length of stay in the intensive care unit was 7 days [03 - 17 days]. One patient had a reoperation on Day 0 post-op. The average hospital stay was 13 days [06 - 27 days]. Complications occurred in nine of the patients (90%), with a predominance of infectious and neurological complications. Overall operative mortality was 3%, all in intensive care.
基金Supported by Health and Family Planning Project of Sichuan Province,No.17PJ069Tibet Autonomous Region Science and Technology Program,No.XZ202303ZY0011G.
文摘BACKGROUND The FreeStyle Libre flash glucose monitoring(FGM)system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose.Due to its increased usage in clinics,the number of studies investigating its accuracy has increased.However,its accuracy has not been investigated in highland populations in China.AIM To evaluate measurements recorded using the FreeStyle Libre FGM system compared with capillary blood glucose measured using the enzyme electrode method in patients with type 2 diabetes(T2D)who had migrated within 3 mo from highlands to plains.METHODS Overall,68 patients with T2D,selected from those who had recently migrated from highlands to plains(within 3 mo),were hospitalized at the Department of Endocrinology from August to October 2017 and underwent continuous glucose monitoring(CGM)with the FreeStyle Libre FGM system for 14 d.Throughout the study period,fingertip capillary blood glucose was measured daily using the enzyme electrode method(Super GL,China),and blood glucose levels were read from the scanning probe during fasting and 2 h after all three meals.Moreover,the time interval between reading the data from the scanning probe and collecting fingertip capillary blood was controlled to<5 min.The accuracy of the FGM system was evaluated according to the CGM guidelines.Subsequently,the factors influencing the mean absolute relative difference(MARD)of this system were analyzed by a multiple linear regression method.RESULTS Pearson’s correlation analysis showed that the fingertip and scanned glucose levels were positively correlated(R=0.86,P=0.00).The aggregated MARD of scanned glucose was 14.28±13.40%.Parker's error analysis showed that 99.30%of the data pairs were located in areas A and B.According to the probe wear time of the FreeStyle Libre FGM system,MARD_(1 d) and MARD_(2-14 d) were 16.55%and 14.35%,respectively(t=1.23,P=0.22).Multiple stepwise regression analysis showed that MARD did not correlate with blood glucose when the largest amplitude of glycemic excursion(LAGE)was<5.80 mmol/L but negatively correlated with blood glucose when the LAGE was≥5.80 mmol/L.CONCLUSION The FreeStyle Libre FGM system has good accuracy in patients with T2D who had recently migrated from highlands to plains.This system might be ideal for avoiding the effects of high hematocrit on blood glucose monitoring in populations that recently migrated to plains.MARD is mainly influenced by glucose levels and fluctuations,and the accuracy of the system is higher when the blood glucose fluctuation is small.In case of higher blood glucose level fluctuations,deviation in the scanned glucose levels is the highest at extremely low blood glucose levels.
基金supported in part by the Chongqing Electronics Engineering Technology Research Center for Interactive Learningin part by the Chongqing key discipline of electronic informationin part by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201630)。
文摘Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.