The novel polyoxometalate, 32[Mo8ⅣMo4ⅤV2ⅣO38(PO4)], was synthesized and characterized by elementary analysis, EPR, IR spectra and X ray diffraction. The compoundcrystallizes in triclinic system, space group with a=...The novel polyoxometalate, 32[Mo8ⅣMo4ⅤV2ⅣO38(PO4)], was synthesized and characterized by elementary analysis, EPR, IR spectra and X ray diffraction. The compoundcrystallizes in triclinic system, space group with a= 1.41999(2)nm, b=1.43467(2)nm, c=1.694610(10)nm, α=95.7250(10)°, β=92.2110(10)°, γ=92.6060(10)°, V=3.42829(7)nm3, Z=2, Dc=2.388g·cm-3, Mr=2465.10g·mol-1, μ=2.489mm-1, F(000)=2388, R1=0.0584, wR2=0.1461, S=1.164. The heteropolyanion is a bi capped pseudo Keggin complex. CCDC: 186645.展开更多
Constructing binary heterojunctions is an important strategy to improve the photocatalytic performance of graphitic carbon nitride(g‐C3N4).In this paper,a novel g‐C3N4 nanosheet‐based composite was constructed via ...Constructing binary heterojunctions is an important strategy to improve the photocatalytic performance of graphitic carbon nitride(g‐C3N4).In this paper,a novel g‐C3N4 nanosheet‐based composite was constructed via in situ growth of bismuth oxyiodide(BiOI)nanoplates on the surface of g‐C3N4 nanosheets.The crystal phase,microstructure,optical absorption and textural properties of the synthesized photocatalysts were analyzed by X‐ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),ultraviolet‐visible(UV‐vis)diffuse reflectance spectroscopy(DRS),and nitrogen adsorption‐desorption isotherm measurements.The BiOI/g‐C3N4 nanosheet composite showed high activity and recyclability for the photodegradation of the target pollutant rhodamine B(RhB).The conversion of RhB(20 mg L?1)by the photocatalyst was nearly 100%after 50 min under visible‐light irradiation.The high photoactivity of the BiOI/g‐C3N4 nanosheet composite can be attributed to the enhanced visible‐light absorption of the g‐C3N4 nanosheets sensitized by BiOI nanoplates as well as the high charge separation efficiency obtained by the establishment of an internal electric field between the n‐type g‐C3N4 and p‐type BiOI.Based on the characterization and experimental results,a double‐transfer mechanism of the photoinduced electrons in the BiOI/g‐C3N4 nanosheet composite was proposed to explain its activity.This work represents a new strategy to understand and realize the design and synthesis of g‐C3N4 nanosheet‐based heterojunctions that display highly efficient charge separation and transfer.展开更多
Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and charact...Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and characterized by powder X‐ray diffraction,Fourier transform infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy,UV‐visible diffuse‐reflectance spectrometry,and photoluminescence emission spectrometry.The photocatalytic activities of the series of MG‐x heterojunctions toward Cr(VI)reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight.The influence of different organic compounds(ethanol,citric acid,oxalic acid,and diclofenac sodium)as hole scavengers and the pH values(2,3,4,6,and 8)on the photocatalytic activities of the series of MG‐x heterojunctions was investigated.MG‐20%showed superior photocatalytic Cr(VI)reduction and diclofenac sodium degradation performance than did the individual MIL‐100(Fe)and g‐C3N4 because of the improved separation of photoinduced electron‐hole charges,which was clarified via photoluminescence emission and electrochemical data.Moreover,the MG‐x exhibited good reusability and stability after several runs.展开更多
Both MnOx and g‐C3N4 have been proved to be active in the catalytic oxidation of NO,and their individual mechanisms for catalytic NO conversion have also been investigated.However,the mechanism of photo‐thermal cata...Both MnOx and g‐C3N4 have been proved to be active in the catalytic oxidation of NO,and their individual mechanisms for catalytic NO conversion have also been investigated.However,the mechanism of photo‐thermal catalysis of the MnOx/g‐C3N4 composite remains unresolved.In this paper,MnOx/g‐C3N4 catalysts with different molar ratios were synthesized by the precipitation approach at room temperature.The as‐prepared catalysts exhibit excellent synergistic photo‐thermal catalytic performance towards the purification of NO in air.The MnOx/g‐C3N4 catalysts contain MnOx with different valence states on the surface of g‐C3N4.The thermal catalytic reaction for NO oxidation on MnOx and the photo‐thermal catalytic reaction on 1:5 MnOx/g‐C3N4 were investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS).The results show that light exerted a weak effect on NO oxidation over MnOx,and it exerted a positive synergistic effect on NO conversion over 1:5 MnOx/g‐C3N4.A synergistic photo‐thermal catalytic cycle of NO oxidation on MnOx/g‐C3N4 is proposed.Specifically,photo‐generated electrons(e?)are transferred to MnOx and participate in the synergistic photo‐thermal reduction cycle(Mn4+→Mn3+→Mn2+).The reverse cycle(Mn2+→Mn3+→Mn4+)can regenerate the active oxygen vacancy sites and inject electrons into the g‐C3N4 hole(h+).The active oxygen(O?)was generated in the redox cycles among manganese species(Mn4+/Mn3+/Mn2+)and could oxidize the intermediates(NOH and N2O2?)to final products(NO2?and NO3?).This paper can provide insightful guidance for the development of better catalysts for NOx purification.展开更多
Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger spe...Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger specific surface areas and more reaction sites.In addition,poly‐o‐phenylenediamine(PoPD)can improve the electrical conductivity and photocatalytic activity of semiconductor materials.Here,the novel efficient composite PoPD/AgCl/g‐C3N4 nanosheets was first synthesized by a precipitation reaction and the photoinitiated polymerization approach.The obtained photocatalysts have larger specific surface areas and could achieve better visible‐light response.However,silver chloride(AgCl)is susceptible to agglomeration and photocorrosion.The PoPD/AgCl/CN composite exhibits an extremely high photocurrent density,which is three times that of CN.Obviously enhanced photocatalytic activities of PoPD/AgCl/g‐C3N4 are revealed through the photodegradation of tetracycline.The stability of PoPD/AgCl/CN is demonstrated based on four cycles of experiments that reveal that the degradation rate only decreases slightly.Furthermore,.O2^-and h+are the main active species,which are confirmed through a trapping experiment and ESR spin‐trap technique.Therefore,the prepared PoPD/AgCl/CN can be considered as a stable photocatalyst,in which PoPD is added as a charge carrier and acts a photosensitive protective layer on the surface of the AgCl particles.This provides a new technology for preparing highly stable composite photocatalysts that can effectively deal with environmental issues.展开更多
Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a st...Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a star visible‐light photocatalyst in this field due to its various advantages.However,pristine g‐C3N4usually exhibits limited activity.Herein,to enhance the performance of g‐C3N4,alkali metal ion(Li+,Na+,or K+)‐doped g‐C3N4are prepared via facile high‐temperature treatment.The prepared samples are characterized and analyzed using the technique of XRD,ICP‐AES,SEM,UV‐vis DRS,BET,XPS,PL,TRPL,photoelectrochemical measurements,photocatalytic tests,etc.The resultant doped photocatalysts show enhanced visible‐light photocatalytic activities for hydrogen production,benefiting from the increased specific surface areas(which provide more active sites),decreased band gaps for extended visible‐light absorption,and improved electronic structures for efficient charge transfer.In particular,because of the optimal tuning of both microstructure and electronic structure,the Na‐doped g‐C3N4shows the most effective utilization of photogenerated electrons during the water reduction process.As a result,the highest photocatalytic performance is achieved over the Na‐doped g‐C3N4photocatalyst(18.7?mol/h),3.7times that of pristine g‐C3N4(5.0?mol/h).This work gives a systematic study for the understanding of doping effect of alkali metals in semiconductor photocatalysis.展开更多
A two‐step photocatalytic water splitting system,termed a“Z‐scheme system”,was achieved using Zn‐doped g‐C3N4for H2evolution and BiVO4for O2evolution with Fe2+/Fe3+as a shuttle redox mediator.H2and O2were evalua...A two‐step photocatalytic water splitting system,termed a“Z‐scheme system”,was achieved using Zn‐doped g‐C3N4for H2evolution and BiVO4for O2evolution with Fe2+/Fe3+as a shuttle redox mediator.H2and O2were evaluated simultaneously when the doping amount of zinc was10%.Moreover,Zn‐doped(10%)g‐C3N4synthesized by an impregnation method showed superior active ability to form the Z‐scheme with BiVO4than by in‐situ synthesis.X‐ray diffraction,UV‐Vis spectroscopy,scanning electron microscopy,and X‐ray photoelectron spectroscopy were used to characterize the samples.It was determined that more Zn?N bonds could be formed on the surface of g‐C3N4by impregnation,which could facilitate charge transfer.展开更多
Li-S batteries have attracted considerable interest as nextgeneration energy storage devices owing to high energy density and the natural abundance of sulfur.However,the practical applications of Li-S batteries are ha...Li-S batteries have attracted considerable interest as nextgeneration energy storage devices owing to high energy density and the natural abundance of sulfur.However,the practical applications of Li-S batteries are hampered by the shuttle effect of soluble lithium polysulfides(LPS),which results in low cycle stability.Herein,a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3 N4(t-C3 N4)embedded with Fe304 nanospheres.t-C3 N4 exhibits high surface area and strong anchoring of LPS,and the Fe3 O4/t-C3 N4 accelerates the anchoring of LPS and improves the electronic pathways.The combination of these materials leads to remarkable battery performance with 400%improvement in a specific capacity and a low capacity decay per cycle of 0.02%at 2 C over 1000 cycles,and stable cycling at 6.4 mg cm-2 for high-sulfur-loading cathode.展开更多
文摘The novel polyoxometalate, 32[Mo8ⅣMo4ⅤV2ⅣO38(PO4)], was synthesized and characterized by elementary analysis, EPR, IR spectra and X ray diffraction. The compoundcrystallizes in triclinic system, space group with a= 1.41999(2)nm, b=1.43467(2)nm, c=1.694610(10)nm, α=95.7250(10)°, β=92.2110(10)°, γ=92.6060(10)°, V=3.42829(7)nm3, Z=2, Dc=2.388g·cm-3, Mr=2465.10g·mol-1, μ=2.489mm-1, F(000)=2388, R1=0.0584, wR2=0.1461, S=1.164. The heteropolyanion is a bi capped pseudo Keggin complex. CCDC: 186645.
文摘Constructing binary heterojunctions is an important strategy to improve the photocatalytic performance of graphitic carbon nitride(g‐C3N4).In this paper,a novel g‐C3N4 nanosheet‐based composite was constructed via in situ growth of bismuth oxyiodide(BiOI)nanoplates on the surface of g‐C3N4 nanosheets.The crystal phase,microstructure,optical absorption and textural properties of the synthesized photocatalysts were analyzed by X‐ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),ultraviolet‐visible(UV‐vis)diffuse reflectance spectroscopy(DRS),and nitrogen adsorption‐desorption isotherm measurements.The BiOI/g‐C3N4 nanosheet composite showed high activity and recyclability for the photodegradation of the target pollutant rhodamine B(RhB).The conversion of RhB(20 mg L?1)by the photocatalyst was nearly 100%after 50 min under visible‐light irradiation.The high photoactivity of the BiOI/g‐C3N4 nanosheet composite can be attributed to the enhanced visible‐light absorption of the g‐C3N4 nanosheets sensitized by BiOI nanoplates as well as the high charge separation efficiency obtained by the establishment of an internal electric field between the n‐type g‐C3N4 and p‐type BiOI.Based on the characterization and experimental results,a double‐transfer mechanism of the photoinduced electrons in the BiOI/g‐C3N4 nanosheet composite was proposed to explain its activity.This work represents a new strategy to understand and realize the design and synthesis of g‐C3N4 nanosheet‐based heterojunctions that display highly efficient charge separation and transfer.
基金supported by the National Natural Science Foundation of China(51578034,51878023)the Great Wall Scholars Training Program Project of Beijing Municipality Universities(CIT&TCD20180323)+3 种基金the Project of Construction of Innovation Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality(IDHT20170508)the Beijing Talent Project(2017A38)the Fundamental Research Funds for Beijing Universities(X18075/X18076/X18124/X18125/X18276)the Scientific Research Foundation of Beijing University of Civil Engineering and Architecture(KYJJ2017033/KYJJ2017008)~~
文摘Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and characterized by powder X‐ray diffraction,Fourier transform infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy,UV‐visible diffuse‐reflectance spectrometry,and photoluminescence emission spectrometry.The photocatalytic activities of the series of MG‐x heterojunctions toward Cr(VI)reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight.The influence of different organic compounds(ethanol,citric acid,oxalic acid,and diclofenac sodium)as hole scavengers and the pH values(2,3,4,6,and 8)on the photocatalytic activities of the series of MG‐x heterojunctions was investigated.MG‐20%showed superior photocatalytic Cr(VI)reduction and diclofenac sodium degradation performance than did the individual MIL‐100(Fe)and g‐C3N4 because of the improved separation of photoinduced electron‐hole charges,which was clarified via photoluminescence emission and electrochemical data.Moreover,the MG‐x exhibited good reusability and stability after several runs.
文摘Both MnOx and g‐C3N4 have been proved to be active in the catalytic oxidation of NO,and their individual mechanisms for catalytic NO conversion have also been investigated.However,the mechanism of photo‐thermal catalysis of the MnOx/g‐C3N4 composite remains unresolved.In this paper,MnOx/g‐C3N4 catalysts with different molar ratios were synthesized by the precipitation approach at room temperature.The as‐prepared catalysts exhibit excellent synergistic photo‐thermal catalytic performance towards the purification of NO in air.The MnOx/g‐C3N4 catalysts contain MnOx with different valence states on the surface of g‐C3N4.The thermal catalytic reaction for NO oxidation on MnOx and the photo‐thermal catalytic reaction on 1:5 MnOx/g‐C3N4 were investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS).The results show that light exerted a weak effect on NO oxidation over MnOx,and it exerted a positive synergistic effect on NO conversion over 1:5 MnOx/g‐C3N4.A synergistic photo‐thermal catalytic cycle of NO oxidation on MnOx/g‐C3N4 is proposed.Specifically,photo‐generated electrons(e?)are transferred to MnOx and participate in the synergistic photo‐thermal reduction cycle(Mn4+→Mn3+→Mn2+).The reverse cycle(Mn2+→Mn3+→Mn4+)can regenerate the active oxygen vacancy sites and inject electrons into the g‐C3N4 hole(h+).The active oxygen(O?)was generated in the redox cycles among manganese species(Mn4+/Mn3+/Mn2+)and could oxidize the intermediates(NOH and N2O2?)to final products(NO2?and NO3?).This paper can provide insightful guidance for the development of better catalysts for NOx purification.
基金supported by the National Natural Science Foundation of China(21576125,21776117)the China Postdoctoral Science Foundation(2017M611716,2017M611734)+1 种基金the Six talent peaks project of Jiangsu Province(XCL-014)the Zhenjiang Science&Technology Program(SH2016012)~~
文摘Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger specific surface areas and more reaction sites.In addition,poly‐o‐phenylenediamine(PoPD)can improve the electrical conductivity and photocatalytic activity of semiconductor materials.Here,the novel efficient composite PoPD/AgCl/g‐C3N4 nanosheets was first synthesized by a precipitation reaction and the photoinitiated polymerization approach.The obtained photocatalysts have larger specific surface areas and could achieve better visible‐light response.However,silver chloride(AgCl)is susceptible to agglomeration and photocorrosion.The PoPD/AgCl/CN composite exhibits an extremely high photocurrent density,which is three times that of CN.Obviously enhanced photocatalytic activities of PoPD/AgCl/g‐C3N4 are revealed through the photodegradation of tetracycline.The stability of PoPD/AgCl/CN is demonstrated based on four cycles of experiments that reveal that the degradation rate only decreases slightly.Furthermore,.O2^-and h+are the main active species,which are confirmed through a trapping experiment and ESR spin‐trap technique.Therefore,the prepared PoPD/AgCl/CN can be considered as a stable photocatalyst,in which PoPD is added as a charge carrier and acts a photosensitive protective layer on the surface of the AgCl particles.This provides a new technology for preparing highly stable composite photocatalysts that can effectively deal with environmental issues.
基金supported by the National Natural Science Foundation of of China(51472191,21407115,21773179)the Natural Science Foundation of Hubei Province of China(2017CFA031)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education(JDGD-201509)~~
文摘Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a star visible‐light photocatalyst in this field due to its various advantages.However,pristine g‐C3N4usually exhibits limited activity.Herein,to enhance the performance of g‐C3N4,alkali metal ion(Li+,Na+,or K+)‐doped g‐C3N4are prepared via facile high‐temperature treatment.The prepared samples are characterized and analyzed using the technique of XRD,ICP‐AES,SEM,UV‐vis DRS,BET,XPS,PL,TRPL,photoelectrochemical measurements,photocatalytic tests,etc.The resultant doped photocatalysts show enhanced visible‐light photocatalytic activities for hydrogen production,benefiting from the increased specific surface areas(which provide more active sites),decreased band gaps for extended visible‐light absorption,and improved electronic structures for efficient charge transfer.In particular,because of the optimal tuning of both microstructure and electronic structure,the Na‐doped g‐C3N4shows the most effective utilization of photogenerated electrons during the water reduction process.As a result,the highest photocatalytic performance is achieved over the Na‐doped g‐C3N4photocatalyst(18.7?mol/h),3.7times that of pristine g‐C3N4(5.0?mol/h).This work gives a systematic study for the understanding of doping effect of alkali metals in semiconductor photocatalysis.
基金supported by the National Natural Science Foundation of China (21773153)~~
文摘A two‐step photocatalytic water splitting system,termed a“Z‐scheme system”,was achieved using Zn‐doped g‐C3N4for H2evolution and BiVO4for O2evolution with Fe2+/Fe3+as a shuttle redox mediator.H2and O2were evaluated simultaneously when the doping amount of zinc was10%.Moreover,Zn‐doped(10%)g‐C3N4synthesized by an impregnation method showed superior active ability to form the Z‐scheme with BiVO4than by in‐situ synthesis.X‐ray diffraction,UV‐Vis spectroscopy,scanning electron microscopy,and X‐ray photoelectron spectroscopy were used to characterize the samples.It was determined that more Zn?N bonds could be formed on the surface of g‐C3N4by impregnation,which could facilitate charge transfer.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2019R1A2C1003594 and NRF-2019R1A2C1003551)。
文摘Li-S batteries have attracted considerable interest as nextgeneration energy storage devices owing to high energy density and the natural abundance of sulfur.However,the practical applications of Li-S batteries are hampered by the shuttle effect of soluble lithium polysulfides(LPS),which results in low cycle stability.Herein,a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3 N4(t-C3 N4)embedded with Fe304 nanospheres.t-C3 N4 exhibits high surface area and strong anchoring of LPS,and the Fe3 O4/t-C3 N4 accelerates the anchoring of LPS and improves the electronic pathways.The combination of these materials leads to remarkable battery performance with 400%improvement in a specific capacity and a low capacity decay per cycle of 0.02%at 2 C over 1000 cycles,and stable cycling at 6.4 mg cm-2 for high-sulfur-loading cathode.