期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructural Evolution Mechanism of C-(A)-S-H Gel in Portland Cement Pastes Affected by Sulfate Ions 被引量:1
1
作者 张高展 ZHANG Xiaojia +2 位作者 丁庆军 HOU Dongshuai LIU Kaiwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期639-647,共9页
The microstructural evolution of C-(A)-S-H gel in Portland cement pastes immersed in pure water and 5.0 wt% Na2SO4 solution for different ages was comparatively investigated, by means of ^(29) Si NMR spectroscopy,... The microstructural evolution of C-(A)-S-H gel in Portland cement pastes immersed in pure water and 5.0 wt% Na2SO4 solution for different ages was comparatively investigated, by means of ^(29) Si NMR spectroscopy, and SEM-EDS analysis. Additionally, molecular dynamics simulation was performed to study the aluminum coordination status and interaction of sulfate ions in C-(A)-S-H gel. The results showed significant changes in the microstructural evolution of C-(A)-S-H gel in Portland cement paste. Sulfate attack has decalcifying and dealuminizing effect on C-(A)-S-H gel which is evident from increase in mean chain length(MCL) and decrease in Ca/Si & Al[4]/Si ratios of C-(A)-S-H gel. Additionally, Molecular dynamics simulation proves that Al[4] substituted in silicate chains of C-(A)-S-H gel is thermodynamically metastable, which may explain its migration from the silicate chains and transformation to Al[6], thus lowering the Al[4]/Si ratio of C-(A)-S-H gel. SO4^(2-)ions can carry the interfacial Ca^(2+) ions into the pore solution by the diffusion-absorption-desorption process, which unravels the mechanism of sulfate attack on C-(A)-S-H gel. 展开更多
关键词 sulfate attack portland cement paste c-(A)-S-H gel microstructure interaction mechanism
下载PDF
Study on the friction and wear properties of the surface nanocrystallized 1.0C-1.5Cr steel induced by the surface mechanical attrition treatment 被引量:1
2
作者 ZHANG Junbao1),WANG Aixiang1,2)and ZHANG Yujun1)1)Advanced Technology Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China2)School of Materials Science & Engineering,Shanghai Jiao Tong University,Shanghai 200030,China 《Baosteel Technical Research》 CAS 2010年第4期17-21,共5页
Nano-structured layers are fabricated on the surface of 1.0C-1.5Cr steel by using the surface mechanical attrition treatment(SMAT)technology,and the microstructures of the surface nano-crystallization layers are chara... Nano-structured layers are fabricated on the surface of 1.0C-1.5Cr steel by using the surface mechanical attrition treatment(SMAT)technology,and the microstructures of the surface nano-crystallization layers are characterized by means of X-ray diffraction(XRD)and transmission electron microscopy(TEM).The friction and wear properties are also investigated by a UMT-2 friction and wear tester.Experimental research has indicated that the average diameter of nanocrystalline grains in the surface layer after being treated for 15 min is in the range of 10-20 nm,and ferrite and cementite grains can not be identified by their morphologies.The wear-resistance of the specimen treated for 15 min has been doubled,compared with that of the matrix due to the grain refinement to a nano-sized scale.The lowest friction coefficient is 0.27,which is for the specimen treated for 30 min,resulting from the dissolution of the cementite phase and the formation of a relative homogenous structure.The SMAT technique for enhancing the wear-resistance of the 1.0C-1.5Cr steel has an optimum processing time,which is in the range of 15-30 min.The dominant wear mechanism of the specimen treated for 15 min changes from adhesive wear into particle wear. 展开更多
关键词 1.0c-1.5Cr steels surface mechanical attrition treatment surface nanocrystallization friction and wear
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部