Objective: To study the regulatory effect and molecular mechanism of juglone on apoptosis of cervical cancer Hela cells. Methods: Cervical cancer Hela cells were cultured and treated with different dosages of juglone ...Objective: To study the regulatory effect and molecular mechanism of juglone on apoptosis of cervical cancer Hela cells. Methods: Cervical cancer Hela cells were cultured and treated with different dosages of juglone (10, 20, and 40 pmol/L, respectively) and c-Jun N-terminal kinase (JNK) inhibitor SP600125 (10, 20, and 40 mu mol/L. respectively). Then cellular proliferative activity and the expression of JNK/c-Jun pathway molecule and apoptotic molecule in the cells were detected. Results: After 6, 12. 18 and 24 h of treatment, the value for proliferative activity of cells treated with juglone was significantly lower than that of control group (p<0.05), and the anti-proliferative effect was more significant as the treatment period and juglone dosage increased (P<0.05). The protein expressions of Box, CytC, Fas, FasL, Caspase-3, and p-c-Jun in cells treated with juglone were significantly higher than those of control group (P<0.05), and the protein expressions of Bax, CytC, Fas. FasL, Caspase-3, p-JNK and p-c-Jun increased more remarkably as the juglone dosage increased (P<0.05). In cells treated with 40 pmol/L juglone and SP600125, the protein expressions of Bax, CytC, Fas. Fast.. and Caspase-3 were significantly lower than those of cells treated with 40 pmol/L juglone (J<0.05), and the protein expressions of Bax, CytC, Fas, FasL and Caspase-3 reduced more remarkably as the SP600125 dosage increased (P<0.05). Conclusion: Juglone can increase the expression of apoptotic molecules in mitochondrial pathway and death receptor pathway by activating JNK/c-Jun pathway, thus inducing apoptosis of cervical cancer cells.展开更多
Following acute and chronic liver injury,hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content,but the mechanisms of retinoi...Following acute and chronic liver injury,hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content,but the mechanisms of retinoid loss and its potential roles in HSCs activation and liver fibrosis are not understood.The influence of retinoids on HSCs and hepatic fibrosis remains controversial.The purpose of this study was to evaluate the effects of all-trans retinoid acid (ATRA) on cell proliferation,mRNA expression of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)],profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),fibrolytic genes (MMP-3,MMP-13) and the upstream element (JNK and AP-1) in the rat hepatic stellate cell line (CFSC-2G).Cell proliferation was evaluated by measuring BrdU incorporation.The mRNA expression levels of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)],profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and fibrolytic genes (MMP-3,MMP-13) were quantitatively detected by using real-time PCR.The mRNA expression of JNK and AP-1 was quantified by RT-PCR.The results showed that ATRA inhibited HSCs proliferation and diminished the mRNA expression of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)] and profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and significantly stimulated the mRNA expression of MMP-3 and MMP-13 in HSCs by suppressing the mRNA expression of JNK and AP-1.These findings suggested that ATRA could inhibit proliferation and collagen production of HSCs via the suppression of active protein-1 and c-Jun N-terminal kinase signal,then decrease the mRNAs expression of profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and significantly induce the mRNA expression of MMP-3 and MMP-13.展开更多
AIM: To determine the role of c-Jun N-terminal kinase (JNK) activity in ethanol-induced apoptosis and the modulation of this signaling cascade by S-Adenosylmethionine (AdoMet). METHODS: Primary hepatocyte cultur...AIM: To determine the role of c-Jun N-terminal kinase (JNK) activity in ethanol-induced apoptosis and the modulation of this signaling cascade by S-Adenosylmethionine (AdoMet). METHODS: Primary hepatocyte cultures were pretreated with 100 IJmol/L SP600125, a selective JNK inhibitor, 1 mL/L DMSO or 4 mmol/L AdoMet and then exposed to 100 mmo/L ethanol. Hepatocyte apoptosis was determined by the TUNEL and DNA ladder assays. JNK activity and its inhibition by SP600125 and AdoMet were determined by Western blot analysis of c-jun phosphorylation and Bid fragmentation. SP600125 and AdoMet effects on the apoptotic signaling pathway were determined by Western blot analysis of cytochrome c release and pro-caspase 3 fragmentation. The AdoMet effect on glutathione levels was measured by EIIman's method and reactive oxygen species (ROS) generation by cell cytometry. RESULTS: The exposure of hepatocytes to ethanol induced JNK activation, c-jun phosphorylation, Bid fragmentation, cytochrome c release and pro-caspase 3 cleavage; these effects were diminished by SP600125, and caused a significant decrease in ethanol-induced apoptosis (P〈 0.05). AdoMet exerted an antioxidant effect maintaining glutathione levels and decreasing ROS generation, without a significant effect on JNK activity, and prevented cytochrome c release and pro-caspase 3 cleavage.CONCLUSION: The JNK signaling cascade is a key component of the proapoptotic signaling pathway induced by ethanol. JNK activation may be independent from ROS generation, since AdoMet which exerted antioxidant properties did not have a significant effect on JNK activity. JNK pathway modulator agents and AdoMet may be components of promising therapies for alcoholic liver disease (ALD) treatment.展开更多
AIM: To clarify the relationship between autophagy and lipotoxicity-induced apoptosis, which is termed "lipoapoptosis," in non-alcoholic steatohepatitis. METHODS: Male C57BL/6J mice were fed a high-fat diet(...AIM: To clarify the relationship between autophagy and lipotoxicity-induced apoptosis, which is termed "lipoapoptosis," in non-alcoholic steatohepatitis. METHODS: Male C57BL/6J mice were fed a high-fat diet(HFD) for 12 wk, after which the liver histology and expression of proteins such as p62 or LC3 were evaluated. Alpha mouse liver 12(AML12) cells treated with palmitate(PA) were used as an in vitro model. RESULTS: LC3-Ⅱ, p62, and Run domain Beclin-1 interacting and cysteine-rich containing(Rubicon) proteins increased in both the HFD mice and in AML12 cells in response to PA treatment. Rubicon expression was decreased upon c-Jun N-terminal kinase(JNK) inhibition at both the m RNA and the protein level in AML12 cells. Rubicon knockdown in AML12 cells with PA decreased the protein levels of both LC3-Ⅱ and p62. Rubicon expression peaked at 4 h of PA treatment in AML12, and then decreased. Treatment with caspase-9 inhibitor ameliorated the decrease in Rubicon protein expression at 10 h of PA and resulted in enlarged AML12 cells under PA treatment. The enlargement of AML12 cells by PA with caspase-9 inhibition was canceled by Rubicon knockdown.CONCLUSION: The JNK-Rubicon axis enhanced lipoapoptosis, and caspase-9 inhibition and Rubicon had effects that were cytologically similar to hepatocyte ballooning. As ballooned hepatocytes secrete fibrogenic signals and thus might promote fibrosis in the liver, the inhibition of hepatocyte ballooning might provide antifibrosis in the NASH liver.展开更多
AIM:To investigate the role of c-Jun N-terminal kinase(JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermo...AIM:To investigate the role of c-Jun N-terminal kinase(JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermotherapy at 43 ℃ for 0,0.5,1,2 or 3 h,the cells were cultured for a further 24 h with or without the JNK specific inhibitor,SP600125 for 2 h.Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL)] and flow cytometry(Annexin vs propidium iodide).Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.The production of p-JNK,Bcl-2,Bax and caspase-3 proteins was evaluated by Western blotting.The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction.RESULTS:The proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy,and was 32.7%,30.6%,43.8% and 52.9% at 0.5,1,2 and 3 h post-thermotherapy,respectively.Flow cytometry analysis revealed an increased population of SGC790l cells in G0/G1 phase,but a reduced population in S phase following thermotherapy for 1 or 2 h,compared to untreated cells(P < 0.05).The increased number of SGC-790l cells in G0/G1 phase was consistent with induced apoptosis(flow cytometry) following thermotherapy for 0.5,1,2 or 3 h,compared to the untreated group(46.5% ± 0.23%,39.9% ± 0.53%,56.6% ± 0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%,P < 0.01),respectively.This was supported by the TUNEL assay(48.2% ± 0.4%,40.1% ± 0.2%,61.2% ± 0.29% and 52.0% ± 0.42% vs 12.2% ± 0.22%,P < 0.01) respectively.More importantly,the expression of p-JNK protein and JNK mRNA levels were significantly higher at 0.5 h than at 0 h post-treatment(P < 0.01),and peaked at 2 h.A similar pattern was detected for Bax and caspase-3 proteins.Bcl-2 increased at 0.5 h,peaked at 1 h,and then decreased.Furthermore,the JNK specific inhibitor,SP600125,suppressed p-JNK,Bax and caspase-3 at the protein level in SGC790l cells following thermotherapy,compared to mock-inhibitor treatment,which was in line with the decreased rate of apoptosis.The expression of Bcl-2 was consistent with thermotherapy alone.CONCLUSION:Thermotherapy induced apoptosis in gastric cancer cells by promoting p-JNK at the mRNA and protein levels,and up-regulated the expression of Bax and caspase-3 proteins.Bcl-2 may play a protective role during thermotherapy.Activation of JNK via the Bax-caspase-3 pathway may be important in thermotherapy-induced apoptosis in gastric cancer cells.展开更多
Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positi...Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positive cells in myeloid tissues for spina bifida manifesta was increased. There was also increased phosphorylation of c-Jun N-terminal kinase, a member of the mitogen activated protein kinase family. The c-Jun N-terminal kinase phosphorylation level was positively correlated with caspase-3 expression in myeloid tissues for spina bifida manifesta. Experimental findings indicate that abnormal apoptosis is involved in retinoic acid-induced dominant spina bifida formation in fetal rats, and may be associated with the c-Jun N-terminal kinase signal transduction pathway.展开更多
AIM: To illustrate the isoform-specific role and mechanism of c-Jun N-terminal kinases(JNKs) in mouse optic nerve axotomy induced neurotrauma. METHODS: We firstly investigated the expression of JNK1, JNK2, and JNK3 in...AIM: To illustrate the isoform-specific role and mechanism of c-Jun N-terminal kinases(JNKs) in mouse optic nerve axotomy induced neurotrauma. METHODS: We firstly investigated the expression of JNK1, JNK2, and JNK3 in the retinal ganglion cells(RGCs) by double-immunofluorescent staining. Then we created optic nerve axotomy model in wild type as well as JNK1, JNK2, JNK3, isoform specific gene deficiency mice. With that, we checked the protein expression profile of JNKs and its active form, and quantified the survival RGCs number by immunofluorescence staining. We further explored the molecules underlying isoform specific protective effect by real-time polymerase chain reaction(PCR) and Western blotting assay. RESULTS: We found that all the three isoforms of JNKs were expressed in the RGCs. Deficiency of JNK3, but not JNK1 or JNK2, significantly alleviated optic nerve axotomyinduced RGCs apoptosis. We further established that expression of Noxa, a pro-apoptotic member of BH3 family, was significantly suppressed only in JNK3 gene deficiency mice. But tumor necrosis factor receptor 1(TNFR1) and Fas, two key modulators of death receptor mediated apoptosis pathway, did not display obvious change in the expression. CONCLUSION: It is suggested that mitochondria mediated apoptosis, but not death receptor mediated apoptosis got involved in the JNK3 gene deficiency induced RGCs protection. Our study provides a novel insight into the isoform-specific role of JNKs in neurotrauma and indicates some cues for its therapeutics.展开更多
BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap...BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.展开更多
Background:G-protein coupled receptors(GPCRs)are recognized as attractive targets for drug therapy.However,it remains poorly understood how GPCRs,except for a few chemokine receptors,regulate the progression of liver ...Background:G-protein coupled receptors(GPCRs)are recognized as attractive targets for drug therapy.However,it remains poorly understood how GPCRs,except for a few chemokine receptors,regulate the progression of liver fibrosis.Here,we aimed to reveal the role of GPR65,a proton-sensing receptor,in liver fibrosis and to elucidate the underlying mechanism.Methods:The expression level of GPR65 was evaluated in both human and mouse fibrotic livers.Furthermore,Gpr65-deficient mice were treated with either bile duct ligation(BDL)for 21 d or carbon tetrachloride(CCl4)for 8 weeks to investigate the role of GPR65 in liver fibrosis.A combination of experimental approaches,including Western blotting,quantitative real-time reverse transcription-polymerase chain reaction(qRT-PCR),and enzyme-linked immunosorbent assay(ELISA),confocal microscopy and rescue studies,were used to explore the underlying mechanisms of GPR65’s action in liver fibrosis.Additionally,the therapeutic potential of GPR65 inhibitor in the development of liver fibrosis was investigated.Results:We found that hepatic macrophage(HM)-enriched GPR65 was upregulated in both human and mouse fibrotic livers.Moreover,knockout of Gpr65 significantly alleviated BDL-and CCl4-induced liver inflammation,injury and fibrosis in vivo,and mouse bone marrow transplantation(BMT)experiments further demonstrated that the protective effect of Gpr65knockout is primarily mediated by bone marrow-derived macrophages(BMMs).Additionally,in vitro data demonstrated that Gpr65 silencing and GPR65 antagonist inhibited,while GPR65 overexpression and application of GPR65 endogenous and exogenous agonists enhanced the expression and release of tumor necrosis factor-α(TNF-α),interleukin-6(IL-6)and transforming growth factor-β(TGF-β),all of which subsequently promoted the activation of hepatic stellate cells(HSCs)and the damage of hepatocytes(HCs).Mechanistically,GPR65 overexpression,the acidic pH and GPR65 exogenous agonist induced up-regulation of TNF-αand IL-6 via the Gαq-Ca^(2+)-JNK/NF-κB pathways,while promoted the expression of TGF-βthrough the Gαq-Ca^(2+)-MLK3-MKK7-JNK pathway.Notably,pharmacological GPR65 inhibition retarded the development of inflammation,HCs injury and fibrosis invivo.Conclusions:GPR65 is a major regulator that modulates the progression of liver fibrosis.Thus,targeting GPR65 could be an effective therapeutic strategy for the prevention of liver fibrosis.展开更多
Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvesse...Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvessel occlusion (4-VO) method. The sphingomyelinase inhibitor TPCK was administered to the CA1 subregion of the rat hippocampus before inducing ischemia. Western blot was used to examine the activity of extracellular- signal regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) using antibodies against ERK, JNK and diphosphorylated ERK and JNK. Results: At lh reperfusion post-ischemia, JNK reached its peak activity while ERK was undergoing a sharp inactivation (P 〈 0.05). The level of diphosphorylated JNK was significantly reduced but the sharp inactivation of ERK was visibly reversed (P 〈 0.05) by the sphingomyelinase inhibitor. Conclusion: The ceramide signaling pathway is up-regulated through sphingomyelin hydrolysis in brain ischemia, promoting JNK activation and suppressing ERK activation, culminating in the ischemic lesion.展开更多
Pancreatic cancer is a dismal disease with high incidence and poor survival rates.With the aim to improve overall survival of pancreatic cancer patients,new therapeutic approaches are urgently needed.Protein kinases a...Pancreatic cancer is a dismal disease with high incidence and poor survival rates.With the aim to improve overall survival of pancreatic cancer patients,new therapeutic approaches are urgently needed.Protein kinases are key regulatory players in basically all stages of development,maintaining physiologic functions but also being involved in pathogenic processes.c-Jun N-terminal kinases(JNK)and p38 kinases,representatives of the mitogen-activated protein kinases,as well as the casein kinase 1(CK1)family of protein kinases are important mediators of adequate response to cellular stress following inflammatory and metabolic stressors,DNA damage,and others.In their physiologic roles,they are responsible for the regulation of cell cycle progression,cell proliferation and differentiation,and apoptosis.Dysregulation of the underlying pathways consequently has been identified in various cancer types,including pancreatic cancer.Pharmacological targeting of those pathways has been the field of interest for several years.While success in earlier studies was limited due to lacking specificity and off-target effects,more recent improvements in small molecule inhibitor design against stress-activated protein kinases and their use in combination therapies have shown promising in vitro results.Consequently,targeting of JNK,p38,and CK1 protein kinase family members may actually be of particular interest in the field of precision medicine in patients with highly deregulated kinase pathways related to these kinases.However,further studies are warranted,especially involving in vivo investigation and clinical trials,in order to advance inhibition of stress-activated kinases to the field of translational medicine.展开更多
AIM:To investigate whether tumor necrosis factor-α(TNF-α)mediates ischemia-reperfusion(I/R)-induced intestinal mucosal injury through c-Jun N-terminal kinase(JNK)activation.METHODS:In this study,intestinal I/R was i...AIM:To investigate whether tumor necrosis factor-α(TNF-α)mediates ischemia-reperfusion(I/R)-induced intestinal mucosal injury through c-Jun N-terminal kinase(JNK)activation.METHODS:In this study,intestinal I/R was induced by 60-min occlusion of the superior mesenteric artery in rats followed by 60-min reperfusion,and the rats were pretreated with a TNF-α inhibitor,pentoxifylline,or the TNF-α antibody infliximab.After surgery,part of the intestine was collected for histological analysis.The mucosal layer was harvested for RNA and protein extraction,which were used for further real-time polymerase chain reaction,enzyme-linked immunosorbent assay and Western blotting analyses.The TNF-α expression,intestinal mucosal injury,cell apoptosis,activation of apoptotic protein and JNK signaling pathway were analyzed.RESULTS:I/R significantly enhanced expression of mucosal TNF-α at both the mRNA and protein levels,induced severe mucosal injury and cell apoptosis,activated caspase-9/caspase-3,and activated the JNK signaling pathway.Pretreatment with pentoxifylline markedly downregulated TNF-α at both the mRNA and protein levels,whereas infliximab pretreatment did not affect the expression of TNF-α induced by I/R.However,pretreatment with pentoxifylline or infliximab dramatically suppressed I/R-induced mucosal injury and cell apoptosis and significantly inhibited the activation of caspase-9/3 and JNK signaling.CONCLUSION:The results indicate there was a TNFα-mediated JNK activation response to intestinal I/R injury.展开更多
Objective: To observe the effects of different therapeutic methods and the recipes of Chinese medicine (CM) on the activation of c-Jun N-terminal kinase (JNK) in Kupffer cells of rats with fatty liver disease and...Objective: To observe the effects of different therapeutic methods and the recipes of Chinese medicine (CM) on the activation of c-Jun N-terminal kinase (JNK) in Kupffer cells of rats with fatty liver disease and to explore the mechanisms of these therapeutic methods. Methods: By using a random number table, 98 rats were randomly divided into 7 groups: control group, model group, and 5 treatment groups, including soothing Liver (Gan) recipe group, invigorating Spleen (Pi) recipe group, dispelling dampness recipe group, promoting blood recipe group, and complex recipe group. Rats in the control group were fed with normal food and distilled water by gastric perfusion, while rats in the model group were fed with high-fat food and distilled spirits by gastric perfusion. Rats in the 5 treatment groups were fed with high-fat food and corresponding recipes by gastric perfusion. Twelve weeks later, all rats were sacrificed and liver tissues were stained for pathohistological observation. Kupffer cells were isolated from livers of rats to evaluate JNK and phospho-JNK expressions by Western blotting. Results: The grade of hepatic steatosis was higher in the model group than the control group (P〈0.05). Compared with the model group, the grade of fatty degeneration in soothing Liver recipe group and invigorating Spleen recipe group were significantly ameliorated (P〈0.05). Expressions of JNK and phospho-JNK in Kupffer cells were significantly higher in the model group than those in the control group (P〈0.05, P〈0.01). Compared with the model group, expressions of JNK in all treatment groups decreased, especially in invigorating Spleen recipe group and promoting blood recipe group (P〈0.05). Compared with the model group, expressions of phospho-JNK in all treatment groups declined significantly (P〈0.01), especially in soothing Live recipe group and invigorating Spleen recipe group. Conclusions: The high expressions of JNK and phospho-JNK in Kupffer cells might play an important role in the pathogenesis of fatty liver disease in rats. The recipes of CM, especially invigorating Spleen recipe and soothing Liver recipe, might protect liver against injury by reducing the total JNK protein content and inhibiting the activation of JNK protein in Kupffer cells of fatty liver model rats, which showed beneficial effects on fatty liver disease.展开更多
The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosp...The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role.展开更多
AIM To investigated the relationships between HER2, c-Jun N-terminal kinase(JNK) and protein kinase B(AKT) with respect to metastatic potential of HER2-positive gastric cancer(GC) cells.METHODS Immunohistochemistry wa...AIM To investigated the relationships between HER2, c-Jun N-terminal kinase(JNK) and protein kinase B(AKT) with respect to metastatic potential of HER2-positive gastric cancer(GC) cells.METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcriptionpolymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility.CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC.展开更多
Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia. Although the mechanistic basis for this activation of JNK1/2 is uncertain, oxidative stress may play a role. The...Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia. Although the mechanistic basis for this activation of JNK1/2 is uncertain, oxidative stress may play a role. The purpose of this study was to investigate whether the activation of JNK1/2 is associated with the production of endogenous nitric oxide (NO). Methods Ischemia and reperfusion (I/R) was induced by cerebral four-vessel occlusion. Sprague-Dawley (SD) rats were divided into 6 groups: sham group, I/R group, neuronal nitric oxide synthase (nNOS) inhibitor (7-nitroindazole, 7-NI) given group, inducible nitric oxide synthase (iNOS) inhibitor (2-amino-5,6-dihydro-methylthiazine, AMT) given group, sodium chloride control group, and 1% dimethyl sulfoxide (DMSO) control group. The levels of protein expression and phospho-JNK1/2 were detected by Western blotting and the survival hippocampus neurons in CA1 zone were observed by cresyl violet staining. Results The study illustrated two peaks of JNK1/2 activation occurred at 30 minutes and 3 days during reperfusion. 7-NI inhibited JNK1/2 activation during the early reperfusion, whereas AMT preferably attenuated JNK1/2 activation during the later reperfusion. Administration of 7-NI and AMT can decrease I/R-induced neuronal loss in hippocampal CA1 region. Conclusion JNK1/2 activation is associated with endogenous NO in response to ischemic insult.展开更多
This study investigated the effects and molecular mechanisms of genistein in improving insulin resistance induced by free fatty acids (FFAs) in HepG2 hepatocytes. A model of insulin resistance in HepG2 cells was est...This study investigated the effects and molecular mechanisms of genistein in improving insulin resistance induced by free fatty acids (FFAs) in HepG2 hepatocytes. A model of insulin resistance in HepG2 cells was established by adding palmitic acid (0.5 mmol/L) to the culture medium and the cells were treated by genistein. Glucose consumption of HepG2 cells was determined by glucose oxidase method. The levels of c-jun N-terminal kinase (JNK) phosphorylation, insulin receptor substrate-1 (IRS-1) Ser307 phosphorylation, JNK, IRS-1, phosphatidylinositol-3-kinase p85 (PI-3K p85) and glucose transporter 1 (GLUT1) proteins were detected by Western blotting. The results showed that after the treatment with palmitic acid for 24 h, the insulin-stimulated glucose transport in HepG2 cells was inhibited, and the glucose consumption was substantially reduced. Meanwhile, the expressions of IRS-1, PI-3K p85 protein and GLUT1 were obviously reduced, while the levels of JNK phosphorylation and IRS-1 Ser307 phosphorylation and the expression of JNK protein were significantly increased, as compared with cells of normal control. However, the aforementioned indices, which indicated the existence of insulin resistance, were reversed by genistein at 1-4 μmol/L in a dose-dependent manner. It was concluded that insulin resistance induced by FFAs in HepG2 hepatocytes could be improved by genistein. Genistein might reverse FFAs-induced insulin resistance in HepG2 cells by targeting JNK.展开更多
The basal activity of JNK is low in normal growing cells and inactivated JNK targets p53 for ubiquitination. To elucidate if the C-terminal part of JNK is responsible for its binding to p53, the low background tet-off...The basal activity of JNK is low in normal growing cells and inactivated JNK targets p53 for ubiquitination. To elucidate if the C-terminal part of JNK is responsible for its binding to p53, the low background tet-off inducible NIH3T3 cell line was selected by luciferase reporter gene and a double stable C-JNK Aa (203-424) cell line was established. After withdrawing tetracycline, the C-JNK fragment expression was induced and cell growth was dramati- cally inhibited 24 h later. However, the expresion of p53 was found to be increased after the induction of C-JNK fragment, evaluated by transfecting p21waf-luciferase reporter genes. Our further studies showed that C-JNK fragment could form complex with p53 both in vivo and in vitro. Induction of C-JNK fragment in vivo can increase p53 stability by inhibiting p53 ubiquitination.展开更多
The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, inc...The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase(ERK), serine-threonine protein kinase(Akt) and c-Jun N-terminal kinase(JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt(pAkt) and phosphorylated ERK(p-ERK) increased immediately after reperfusion, peaked at 4 hours(p-Akt) or 2 hours(p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.展开更多
基金supported by the Hainan Health Department(2002lx-12)
文摘Objective: To study the regulatory effect and molecular mechanism of juglone on apoptosis of cervical cancer Hela cells. Methods: Cervical cancer Hela cells were cultured and treated with different dosages of juglone (10, 20, and 40 pmol/L, respectively) and c-Jun N-terminal kinase (JNK) inhibitor SP600125 (10, 20, and 40 mu mol/L. respectively). Then cellular proliferative activity and the expression of JNK/c-Jun pathway molecule and apoptotic molecule in the cells were detected. Results: After 6, 12. 18 and 24 h of treatment, the value for proliferative activity of cells treated with juglone was significantly lower than that of control group (p<0.05), and the anti-proliferative effect was more significant as the treatment period and juglone dosage increased (P<0.05). The protein expressions of Box, CytC, Fas, FasL, Caspase-3, and p-c-Jun in cells treated with juglone were significantly higher than those of control group (P<0.05), and the protein expressions of Bax, CytC, Fas. FasL, Caspase-3, p-JNK and p-c-Jun increased more remarkably as the juglone dosage increased (P<0.05). In cells treated with 40 pmol/L juglone and SP600125, the protein expressions of Bax, CytC, Fas. Fast.. and Caspase-3 were significantly lower than those of cells treated with 40 pmol/L juglone (J<0.05), and the protein expressions of Bax, CytC, Fas, FasL and Caspase-3 reduced more remarkably as the SP600125 dosage increased (P<0.05). Conclusion: Juglone can increase the expression of apoptotic molecules in mitochondrial pathway and death receptor pathway by activating JNK/c-Jun pathway, thus inducing apoptosis of cervical cancer cells.
文摘Following acute and chronic liver injury,hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content,but the mechanisms of retinoid loss and its potential roles in HSCs activation and liver fibrosis are not understood.The influence of retinoids on HSCs and hepatic fibrosis remains controversial.The purpose of this study was to evaluate the effects of all-trans retinoid acid (ATRA) on cell proliferation,mRNA expression of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)],profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),fibrolytic genes (MMP-3,MMP-13) and the upstream element (JNK and AP-1) in the rat hepatic stellate cell line (CFSC-2G).Cell proliferation was evaluated by measuring BrdU incorporation.The mRNA expression levels of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)],profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and fibrolytic genes (MMP-3,MMP-13) were quantitatively detected by using real-time PCR.The mRNA expression of JNK and AP-1 was quantified by RT-PCR.The results showed that ATRA inhibited HSCs proliferation and diminished the mRNA expression of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)] and profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and significantly stimulated the mRNA expression of MMP-3 and MMP-13 in HSCs by suppressing the mRNA expression of JNK and AP-1.These findings suggested that ATRA could inhibit proliferation and collagen production of HSCs via the suppression of active protein-1 and c-Jun N-terminal kinase signal,then decrease the mRNAs expression of profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and significantly induce the mRNA expression of MMP-3 and MMP-13.
文摘AIM: To determine the role of c-Jun N-terminal kinase (JNK) activity in ethanol-induced apoptosis and the modulation of this signaling cascade by S-Adenosylmethionine (AdoMet). METHODS: Primary hepatocyte cultures were pretreated with 100 IJmol/L SP600125, a selective JNK inhibitor, 1 mL/L DMSO or 4 mmol/L AdoMet and then exposed to 100 mmo/L ethanol. Hepatocyte apoptosis was determined by the TUNEL and DNA ladder assays. JNK activity and its inhibition by SP600125 and AdoMet were determined by Western blot analysis of c-jun phosphorylation and Bid fragmentation. SP600125 and AdoMet effects on the apoptotic signaling pathway were determined by Western blot analysis of cytochrome c release and pro-caspase 3 fragmentation. The AdoMet effect on glutathione levels was measured by EIIman's method and reactive oxygen species (ROS) generation by cell cytometry. RESULTS: The exposure of hepatocytes to ethanol induced JNK activation, c-jun phosphorylation, Bid fragmentation, cytochrome c release and pro-caspase 3 cleavage; these effects were diminished by SP600125, and caused a significant decrease in ethanol-induced apoptosis (P〈 0.05). AdoMet exerted an antioxidant effect maintaining glutathione levels and decreasing ROS generation, without a significant effect on JNK activity, and prevented cytochrome c release and pro-caspase 3 cleavage.CONCLUSION: The JNK signaling cascade is a key component of the proapoptotic signaling pathway induced by ethanol. JNK activation may be independent from ROS generation, since AdoMet which exerted antioxidant properties did not have a significant effect on JNK activity. JNK pathway modulator agents and AdoMet may be components of promising therapies for alcoholic liver disease (ALD) treatment.
文摘AIM: To clarify the relationship between autophagy and lipotoxicity-induced apoptosis, which is termed "lipoapoptosis," in non-alcoholic steatohepatitis. METHODS: Male C57BL/6J mice were fed a high-fat diet(HFD) for 12 wk, after which the liver histology and expression of proteins such as p62 or LC3 were evaluated. Alpha mouse liver 12(AML12) cells treated with palmitate(PA) were used as an in vitro model. RESULTS: LC3-Ⅱ, p62, and Run domain Beclin-1 interacting and cysteine-rich containing(Rubicon) proteins increased in both the HFD mice and in AML12 cells in response to PA treatment. Rubicon expression was decreased upon c-Jun N-terminal kinase(JNK) inhibition at both the m RNA and the protein level in AML12 cells. Rubicon knockdown in AML12 cells with PA decreased the protein levels of both LC3-Ⅱ and p62. Rubicon expression peaked at 4 h of PA treatment in AML12, and then decreased. Treatment with caspase-9 inhibitor ameliorated the decrease in Rubicon protein expression at 10 h of PA and resulted in enlarged AML12 cells under PA treatment. The enlargement of AML12 cells by PA with caspase-9 inhibition was canceled by Rubicon knockdown.CONCLUSION: The JNK-Rubicon axis enhanced lipoapoptosis, and caspase-9 inhibition and Rubicon had effects that were cytologically similar to hepatocyte ballooning. As ballooned hepatocytes secrete fibrogenic signals and thus might promote fibrosis in the liver, the inhibition of hepatocyte ballooning might provide antifibrosis in the NASH liver.
基金Supported by A grant from the National Eleventh Five-Year Technology Support Project of China,No. 2008 BAI68B01
文摘AIM:To investigate the role of c-Jun N-terminal kinase(JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermotherapy at 43 ℃ for 0,0.5,1,2 or 3 h,the cells were cultured for a further 24 h with or without the JNK specific inhibitor,SP600125 for 2 h.Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL)] and flow cytometry(Annexin vs propidium iodide).Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.The production of p-JNK,Bcl-2,Bax and caspase-3 proteins was evaluated by Western blotting.The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction.RESULTS:The proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy,and was 32.7%,30.6%,43.8% and 52.9% at 0.5,1,2 and 3 h post-thermotherapy,respectively.Flow cytometry analysis revealed an increased population of SGC790l cells in G0/G1 phase,but a reduced population in S phase following thermotherapy for 1 or 2 h,compared to untreated cells(P < 0.05).The increased number of SGC-790l cells in G0/G1 phase was consistent with induced apoptosis(flow cytometry) following thermotherapy for 0.5,1,2 or 3 h,compared to the untreated group(46.5% ± 0.23%,39.9% ± 0.53%,56.6% ± 0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%,P < 0.01),respectively.This was supported by the TUNEL assay(48.2% ± 0.4%,40.1% ± 0.2%,61.2% ± 0.29% and 52.0% ± 0.42% vs 12.2% ± 0.22%,P < 0.01) respectively.More importantly,the expression of p-JNK protein and JNK mRNA levels were significantly higher at 0.5 h than at 0 h post-treatment(P < 0.01),and peaked at 2 h.A similar pattern was detected for Bax and caspase-3 proteins.Bcl-2 increased at 0.5 h,peaked at 1 h,and then decreased.Furthermore,the JNK specific inhibitor,SP600125,suppressed p-JNK,Bax and caspase-3 at the protein level in SGC790l cells following thermotherapy,compared to mock-inhibitor treatment,which was in line with the decreased rate of apoptosis.The expression of Bcl-2 was consistent with thermotherapy alone.CONCLUSION:Thermotherapy induced apoptosis in gastric cancer cells by promoting p-JNK at the mRNA and protein levels,and up-regulated the expression of Bax and caspase-3 proteins.Bcl-2 may play a protective role during thermotherapy.Activation of JNK via the Bax-caspase-3 pathway may be important in thermotherapy-induced apoptosis in gastric cancer cells.
基金supported by the National Natural Science Foundation of China, No.30872705/HD426 and No.81070538/HD429
文摘Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positive cells in myeloid tissues for spina bifida manifesta was increased. There was also increased phosphorylation of c-Jun N-terminal kinase, a member of the mitogen activated protein kinase family. The c-Jun N-terminal kinase phosphorylation level was positively correlated with caspase-3 expression in myeloid tissues for spina bifida manifesta. Experimental findings indicate that abnormal apoptosis is involved in retinoic acid-induced dominant spina bifida formation in fetal rats, and may be associated with the c-Jun N-terminal kinase signal transduction pathway.
文摘AIM: To illustrate the isoform-specific role and mechanism of c-Jun N-terminal kinases(JNKs) in mouse optic nerve axotomy induced neurotrauma. METHODS: We firstly investigated the expression of JNK1, JNK2, and JNK3 in the retinal ganglion cells(RGCs) by double-immunofluorescent staining. Then we created optic nerve axotomy model in wild type as well as JNK1, JNK2, JNK3, isoform specific gene deficiency mice. With that, we checked the protein expression profile of JNKs and its active form, and quantified the survival RGCs number by immunofluorescence staining. We further explored the molecules underlying isoform specific protective effect by real-time polymerase chain reaction(PCR) and Western blotting assay. RESULTS: We found that all the three isoforms of JNKs were expressed in the RGCs. Deficiency of JNK3, but not JNK1 or JNK2, significantly alleviated optic nerve axotomyinduced RGCs apoptosis. We further established that expression of Noxa, a pro-apoptotic member of BH3 family, was significantly suppressed only in JNK3 gene deficiency mice. But tumor necrosis factor receptor 1(TNFR1) and Fas, two key modulators of death receptor mediated apoptosis pathway, did not display obvious change in the expression. CONCLUSION: It is suggested that mitochondria mediated apoptosis, but not death receptor mediated apoptosis got involved in the JNK3 gene deficiency induced RGCs protection. Our study provides a novel insight into the isoform-specific role of JNKs in neurotrauma and indicates some cues for its therapeutics.
基金Supported by the Scientific Foundation of Administration of Traditional Chinese Medicine of Hebei Province,China,No.2023257.
文摘BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.
基金This work was supported by the National Natural Science Foundation of China(32171125,81971331 and 82170630).
文摘Background:G-protein coupled receptors(GPCRs)are recognized as attractive targets for drug therapy.However,it remains poorly understood how GPCRs,except for a few chemokine receptors,regulate the progression of liver fibrosis.Here,we aimed to reveal the role of GPR65,a proton-sensing receptor,in liver fibrosis and to elucidate the underlying mechanism.Methods:The expression level of GPR65 was evaluated in both human and mouse fibrotic livers.Furthermore,Gpr65-deficient mice were treated with either bile duct ligation(BDL)for 21 d or carbon tetrachloride(CCl4)for 8 weeks to investigate the role of GPR65 in liver fibrosis.A combination of experimental approaches,including Western blotting,quantitative real-time reverse transcription-polymerase chain reaction(qRT-PCR),and enzyme-linked immunosorbent assay(ELISA),confocal microscopy and rescue studies,were used to explore the underlying mechanisms of GPR65’s action in liver fibrosis.Additionally,the therapeutic potential of GPR65 inhibitor in the development of liver fibrosis was investigated.Results:We found that hepatic macrophage(HM)-enriched GPR65 was upregulated in both human and mouse fibrotic livers.Moreover,knockout of Gpr65 significantly alleviated BDL-and CCl4-induced liver inflammation,injury and fibrosis in vivo,and mouse bone marrow transplantation(BMT)experiments further demonstrated that the protective effect of Gpr65knockout is primarily mediated by bone marrow-derived macrophages(BMMs).Additionally,in vitro data demonstrated that Gpr65 silencing and GPR65 antagonist inhibited,while GPR65 overexpression and application of GPR65 endogenous and exogenous agonists enhanced the expression and release of tumor necrosis factor-α(TNF-α),interleukin-6(IL-6)and transforming growth factor-β(TGF-β),all of which subsequently promoted the activation of hepatic stellate cells(HSCs)and the damage of hepatocytes(HCs).Mechanistically,GPR65 overexpression,the acidic pH and GPR65 exogenous agonist induced up-regulation of TNF-αand IL-6 via the Gαq-Ca^(2+)-JNK/NF-κB pathways,while promoted the expression of TGF-βthrough the Gαq-Ca^(2+)-MLK3-MKK7-JNK pathway.Notably,pharmacological GPR65 inhibition retarded the development of inflammation,HCs injury and fibrosis invivo.Conclusions:GPR65 is a major regulator that modulates the progression of liver fibrosis.Thus,targeting GPR65 could be an effective therapeutic strategy for the prevention of liver fibrosis.
基金supported by grants from the National Natural Science Foundation of China (No.30871200)the Practice and Innovation Training Program for Students in Colleges and Universities of Jiangsu Province (NO.20090370)
文摘Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvessel occlusion (4-VO) method. The sphingomyelinase inhibitor TPCK was administered to the CA1 subregion of the rat hippocampus before inducing ischemia. Western blot was used to examine the activity of extracellular- signal regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) using antibodies against ERK, JNK and diphosphorylated ERK and JNK. Results: At lh reperfusion post-ischemia, JNK reached its peak activity while ERK was undergoing a sharp inactivation (P 〈 0.05). The level of diphosphorylated JNK was significantly reduced but the sharp inactivation of ERK was visibly reversed (P 〈 0.05) by the sphingomyelinase inhibitor. Conclusion: The ceramide signaling pathway is up-regulated through sphingomyelin hydrolysis in brain ischemia, promoting JNK activation and suppressing ERK activation, culminating in the ischemic lesion.
基金German Research Foundation(DFG),No.TR1663/1-1 and No.KN356/9-1and Else Kröner-Fresenius-Stiftung,No.2017_A142.
文摘Pancreatic cancer is a dismal disease with high incidence and poor survival rates.With the aim to improve overall survival of pancreatic cancer patients,new therapeutic approaches are urgently needed.Protein kinases are key regulatory players in basically all stages of development,maintaining physiologic functions but also being involved in pathogenic processes.c-Jun N-terminal kinases(JNK)and p38 kinases,representatives of the mitogen-activated protein kinases,as well as the casein kinase 1(CK1)family of protein kinases are important mediators of adequate response to cellular stress following inflammatory and metabolic stressors,DNA damage,and others.In their physiologic roles,they are responsible for the regulation of cell cycle progression,cell proliferation and differentiation,and apoptosis.Dysregulation of the underlying pathways consequently has been identified in various cancer types,including pancreatic cancer.Pharmacological targeting of those pathways has been the field of interest for several years.While success in earlier studies was limited due to lacking specificity and off-target effects,more recent improvements in small molecule inhibitor design against stress-activated protein kinases and their use in combination therapies have shown promising in vitro results.Consequently,targeting of JNK,p38,and CK1 protein kinase family members may actually be of particular interest in the field of precision medicine in patients with highly deregulated kinase pathways related to these kinases.However,further studies are warranted,especially involving in vivo investigation and clinical trials,in order to advance inhibition of stress-activated kinases to the field of translational medicine.
基金Supported by Grants-in-Aid from the Major Projects Incubator Program of the National Key Basic Research Program of China,No. 2012CB526700National Natural Science Foundation of China,No. 30971357+2 种基金Natural Science Foundation of Guangdong Province,No. S2011020002348Science and Technology Planning Project of Guangdong Province,No. 2009B060300001Major Projects Incubator Program of SunYat-Sen University,No.10ykjc25
文摘AIM:To investigate whether tumor necrosis factor-α(TNF-α)mediates ischemia-reperfusion(I/R)-induced intestinal mucosal injury through c-Jun N-terminal kinase(JNK)activation.METHODS:In this study,intestinal I/R was induced by 60-min occlusion of the superior mesenteric artery in rats followed by 60-min reperfusion,and the rats were pretreated with a TNF-α inhibitor,pentoxifylline,or the TNF-α antibody infliximab.After surgery,part of the intestine was collected for histological analysis.The mucosal layer was harvested for RNA and protein extraction,which were used for further real-time polymerase chain reaction,enzyme-linked immunosorbent assay and Western blotting analyses.The TNF-α expression,intestinal mucosal injury,cell apoptosis,activation of apoptotic protein and JNK signaling pathway were analyzed.RESULTS:I/R significantly enhanced expression of mucosal TNF-α at both the mRNA and protein levels,induced severe mucosal injury and cell apoptosis,activated caspase-9/caspase-3,and activated the JNK signaling pathway.Pretreatment with pentoxifylline markedly downregulated TNF-α at both the mRNA and protein levels,whereas infliximab pretreatment did not affect the expression of TNF-α induced by I/R.However,pretreatment with pentoxifylline or infliximab dramatically suppressed I/R-induced mucosal injury and cell apoptosis and significantly inhibited the activation of caspase-9/3 and JNK signaling.CONCLUSION:The results indicate there was a TNFα-mediated JNK activation response to intestinal I/R injury.
基金Supported by the National Natural Science Foundation of China (No.30371726)
文摘Objective: To observe the effects of different therapeutic methods and the recipes of Chinese medicine (CM) on the activation of c-Jun N-terminal kinase (JNK) in Kupffer cells of rats with fatty liver disease and to explore the mechanisms of these therapeutic methods. Methods: By using a random number table, 98 rats were randomly divided into 7 groups: control group, model group, and 5 treatment groups, including soothing Liver (Gan) recipe group, invigorating Spleen (Pi) recipe group, dispelling dampness recipe group, promoting blood recipe group, and complex recipe group. Rats in the control group were fed with normal food and distilled water by gastric perfusion, while rats in the model group were fed with high-fat food and distilled spirits by gastric perfusion. Rats in the 5 treatment groups were fed with high-fat food and corresponding recipes by gastric perfusion. Twelve weeks later, all rats were sacrificed and liver tissues were stained for pathohistological observation. Kupffer cells were isolated from livers of rats to evaluate JNK and phospho-JNK expressions by Western blotting. Results: The grade of hepatic steatosis was higher in the model group than the control group (P〈0.05). Compared with the model group, the grade of fatty degeneration in soothing Liver recipe group and invigorating Spleen recipe group were significantly ameliorated (P〈0.05). Expressions of JNK and phospho-JNK in Kupffer cells were significantly higher in the model group than those in the control group (P〈0.05, P〈0.01). Compared with the model group, expressions of JNK in all treatment groups decreased, especially in invigorating Spleen recipe group and promoting blood recipe group (P〈0.05). Compared with the model group, expressions of phospho-JNK in all treatment groups declined significantly (P〈0.01), especially in soothing Live recipe group and invigorating Spleen recipe group. Conclusions: The high expressions of JNK and phospho-JNK in Kupffer cells might play an important role in the pathogenesis of fatty liver disease in rats. The recipes of CM, especially invigorating Spleen recipe and soothing Liver recipe, might protect liver against injury by reducing the total JNK protein content and inhibiting the activation of JNK protein in Kupffer cells of fatty liver model rats, which showed beneficial effects on fatty liver disease.
文摘The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role.
基金Supported by SNUH Research Fund,Grant NO 04-2016-0220the Education and Research Encouragement Fund of Seoul National University Hospital(2015)
文摘AIM To investigated the relationships between HER2, c-Jun N-terminal kinase(JNK) and protein kinase B(AKT) with respect to metastatic potential of HER2-positive gastric cancer(GC) cells.METHODS Immunohistochemistry was performed on tissue array slides containing 423 human GC specimens. Using HER2-positve GC cell lines SNU-216 and NCI-N87, HER2 expression was silenced by RNA interference, and the activations of JNK and AKT were suppressed by SP600125 and LY294002, respectively. Transwell assay, Western blot, semi-quantitative reverse transcriptionpolymerase chain reaction and immunofluorescence staining were used in cell culture experiments. RESULTS In GC specimens, HER2, JNK, and AKT activations were positively correlated with each other. In vitro analysis revealed a positive regulatory feedback loop between HER2 and JNK in GC cell lines and the role of JNK as a downstream effector of AKT in the HER2/AKT signaling pathway. JNK inhibition suppressed migratory capacity through reversing EMT and dual inhibition of JNK and AKT induced a more profound effect on cancer cell motility.CONCLUSION HER2, JNK and AKT in human GC specimens are positively associated with each other. JNK and AKT, downstream effectors of HER2, co-operatively contribute to the metastatic potential of HER2-positive GC cells. Thus, targeting of these two molecules in combination with HER2 downregulation may be a good approach to combat HER2-positive GC.
基金This work was supported by a grant from the Project of China Postdoctoral Science Foundation (No. 20100480568).
文摘Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia. Although the mechanistic basis for this activation of JNK1/2 is uncertain, oxidative stress may play a role. The purpose of this study was to investigate whether the activation of JNK1/2 is associated with the production of endogenous nitric oxide (NO). Methods Ischemia and reperfusion (I/R) was induced by cerebral four-vessel occlusion. Sprague-Dawley (SD) rats were divided into 6 groups: sham group, I/R group, neuronal nitric oxide synthase (nNOS) inhibitor (7-nitroindazole, 7-NI) given group, inducible nitric oxide synthase (iNOS) inhibitor (2-amino-5,6-dihydro-methylthiazine, AMT) given group, sodium chloride control group, and 1% dimethyl sulfoxide (DMSO) control group. The levels of protein expression and phospho-JNK1/2 were detected by Western blotting and the survival hippocampus neurons in CA1 zone were observed by cresyl violet staining. Results The study illustrated two peaks of JNK1/2 activation occurred at 30 minutes and 3 days during reperfusion. 7-NI inhibited JNK1/2 activation during the early reperfusion, whereas AMT preferably attenuated JNK1/2 activation during the later reperfusion. Administration of 7-NI and AMT can decrease I/R-induced neuronal loss in hippocampal CA1 region. Conclusion JNK1/2 activation is associated with endogenous NO in response to ischemic insult.
文摘This study investigated the effects and molecular mechanisms of genistein in improving insulin resistance induced by free fatty acids (FFAs) in HepG2 hepatocytes. A model of insulin resistance in HepG2 cells was established by adding palmitic acid (0.5 mmol/L) to the culture medium and the cells were treated by genistein. Glucose consumption of HepG2 cells was determined by glucose oxidase method. The levels of c-jun N-terminal kinase (JNK) phosphorylation, insulin receptor substrate-1 (IRS-1) Ser307 phosphorylation, JNK, IRS-1, phosphatidylinositol-3-kinase p85 (PI-3K p85) and glucose transporter 1 (GLUT1) proteins were detected by Western blotting. The results showed that after the treatment with palmitic acid for 24 h, the insulin-stimulated glucose transport in HepG2 cells was inhibited, and the glucose consumption was substantially reduced. Meanwhile, the expressions of IRS-1, PI-3K p85 protein and GLUT1 were obviously reduced, while the levels of JNK phosphorylation and IRS-1 Ser307 phosphorylation and the expression of JNK protein were significantly increased, as compared with cells of normal control. However, the aforementioned indices, which indicated the existence of insulin resistance, were reversed by genistein at 1-4 μmol/L in a dose-dependent manner. It was concluded that insulin resistance induced by FFAs in HepG2 hepatocytes could be improved by genistein. Genistein might reverse FFAs-induced insulin resistance in HepG2 cells by targeting JNK.
基金supported by National Natural Science Foundation of China(No.30270556)The National Basic Research Program(No.2002CB513004).
文摘The basal activity of JNK is low in normal growing cells and inactivated JNK targets p53 for ubiquitination. To elucidate if the C-terminal part of JNK is responsible for its binding to p53, the low background tet-off inducible NIH3T3 cell line was selected by luciferase reporter gene and a double stable C-JNK Aa (203-424) cell line was established. After withdrawing tetracycline, the C-JNK fragment expression was induced and cell growth was dramati- cally inhibited 24 h later. However, the expresion of p53 was found to be increased after the induction of C-JNK fragment, evaluated by transfecting p21waf-luciferase reporter genes. Our further studies showed that C-JNK fragment could form complex with p53 both in vivo and in vitro. Induction of C-JNK fragment in vivo can increase p53 stability by inhibiting p53 ubiquitination.
基金supported by the National Natural Science Foundation of ChinaNo.81271387+3 种基金the Research Special Fund of Public Welfare and Health Department of ChinaNo.201402009the National Key Technology R&D Program in ChinaNo.Z141107002514031
文摘The signaling mechanisms underlying ischemia-induced nerve cell apoptosis are poorly understood. We investigated the effects of apoptosis-related signal transduction pathways following ischemic spinal cord injury, including extracellular signal-regulated kinase(ERK), serine-threonine protein kinase(Akt) and c-Jun N-terminal kinase(JNK) signaling pathways. We established a rat model of acute spinal cord injury by inserting a catheter balloon in the left subclavian artery for 25 minutes. Rat models exhibited notable hindlimb dysfunction. Apoptotic cells were abundant in the anterior horn and central canal of the spinal cord. The number of apoptotic neurons was highest 48 hours post injury. The expression of phosphorylated Akt(pAkt) and phosphorylated ERK(p-ERK) increased immediately after reperfusion, peaked at 4 hours(p-Akt) or 2 hours(p-ERK), decreased at 12 hours, and then increased at 24 hours. Phosphorylated JNK expression reduced after reperfusion, increased at 12 hours to near normal levels, and then showed a downward trend at 24 hours. Pearson linear correlation analysis also demonstrated that the number of apoptotic cells negatively correlated with p-Akt expression. These findings suggest that activation of Akt may be a key contributing factor in the delay of neuronal apoptosis after spinal cord ischemia, particularly at the stage of reperfusion, and thus may be a target for neuronal protection and reduction of neuronal apoptosis after spinal cord injury.