The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medi...The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medicine and safety inspections,has increased the exposure risk of irradiation safety workers.Traditional irradiation detectors are stiff and incompatible with the skin,and lack human health monitoring function,thus it’s vital to apply these flexible sensors for irradiation warning.Here,we report a novel composite gel device synthesized through solution processes by combining the Cs_(3)Cu_(2)I_(5):Zn nanoscintillator with the pre-patterned biocompatible gel,exhibiting a bi-functional response to motion/vibration sensing and sensitive irradiation warning.These wearable devices achieve a pressure sensitivity of up to 34 kPa^(-1)in a low-pressure range (0–3 kPa),a low limit of detection (LoD) down to 1.4 Pa,enabling health monitoring functions of pulse monitoring,finger bending,and elbow bending.Simultaneously,the device scintillates under X-ray irradiation among a wide dose rate range of 54–1167μGy_(air)s^(-1).The robust device shows no obvious signal loss after 4000 compression cycles and also excellent irradiation resistance over 50 days,broadening the path for designing and realizing new functional wearable devices.展开更多
The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resista...The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-K and Cu-K/3 was around 0.14 ± 0.02 (J/Sr) and 0.04 ±0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (〉 15 keV) was around 0.12± 0.02 (J/Sr).展开更多
A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polyca...A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polycapillary x-ray optics to determine the illuminating region of the incident x-ray beam on the input side of the optics.The CCD detector placed downstream of the polycapillary x-ray optics ensured that the incident x-ray beam controlled by the pinhole irradiated a specific region of the input surface of the optics.The intensity of the output beam of the polycapillary x-ray optics was obtained from the far-field image of the output beam of the optics captured by CCD detector.As an application example,the focal spot size,gain in power density,transmission efficiency,and beam divergence of different parts of a polycapillary focusing x-ray lenses(PFXRL)were measured by a pinhole and CCD detector.Three pinholes with diameters of 500,1000,and 2000μm were used to adjust the diameter of the incident x-ray beam illuminating the PFXRL from 500μm to the entire surface of the input side of the PFXRL.The focal spot size of the PFXRL,gain in power density,transmission efficiency,and beam divergence ranged from 27.1μm to 34.6μm,400 to 3460,26.70%to 5.38%,and 16.8 mrad to 84.86 mrad,respectively.展开更多
Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures t...Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures that meet the increased requirements are a priority in our time. X-ray examinations are of particular importance for the orthopedic and traumatological clinics, where they provide information about presence of a fracture in the patient’s body, about the concrete operation performed or about the effect of a suitable treatment. Along with their benefits X-rays have also a harmful effect. This requires special care to protect from this radiation. In this direction, research is constantly being done to improve the quality of radiation protection. Park MR, Lee KM and co-authors, compare the dose load obtained using C-arm and O-arm X-ray systems (which have the capability of combined 2D fluoroscopy and 3D computed tomography imaging). In their study, an orthopedic surgical procedure using C-arm and O-arm systems in 2D fluoroscopy modes was simulated. The radiation doses to susceptible organs of the operators were investigated. He results obtained show that the O-arm system delivered higher doses to the sensitive organs of the operator in all configurations [1]. The article of Stephen Balte briefly reviews the available technologies for measuring or estimation of patient skin dose in the interventional fluoroscopic environment, created by various X-ray equipment including C-arm systems. Given that many patients require multiple procedures, this documentation also aids in the planning of follow up visits [2]. Chong Hing Wong, Yoshihisa Kotani and co-authors evaluate the radiation exposures (RE) to the patient and surgeon during minimally invasive lumbar spine surgery with instrumentation using C-arm image intensifier or O-arm intraoperative CT. The results they get are in favor of the O-arm system [3]. The article “Virtual fluoroscopy for intraoperative C-arm positioning and radiation dose reduction” discusses positioning of an intraoperative C-arm system to achieve clear visualization of a particular anatomical feature by a system for virtual fluoroscopy (called FluoroSim) that could dramatically reduce time and received dose during the procedures. FluoroSim was found to reduce the radiation exposure required for C-arm positioning without reducing positioning time or accuracy, providing a potentially valuable tool to assist surgeons [4]. In our study, we performed practical measurements to show how the patient can be treated by applying most effective radiation protection when using a mobile C-arm X-ray system. For the study, we used exposure upon a phantom placed on the patient’s table. For an X-ray shielding, we used a protective apron with a lead equivalent of 1 mm, placed in two layers on the phantom. In each subsequent series of exposures, the protective apron was placed on the phantom, in a different position relative to the X-ray beam. The general conclusion of our study is that in order to obtain maximum protection from scattered radiation when using C-arm X-ray systems, the patient must be protected by a shielding with a suitable lead equivalent for the procedure performed which must be placed between patient’s body and X-ray tube, perpendicular to the X-ray beam pointed toward the region of interest.展开更多
Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has a...Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.展开更多
Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling proper...Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling properties of Peltier devices. The pump consists of the diffuser valve unit, the heat deformation material unit, the nozzle valve unit, the Peltier devices and the cover. The input current of the Peltier devices is controlled by the bipolar power supply so that the Peltier devices are heated and cooled periodically. The working fluid flow in the micro-pump is caused by the periodical thermal deformation of material which is caused by the periodical heating and cooling of the Peltier devices. In order to measure the fluid flow in the micro-pump, micro air bubbles are employed as a tracer. The corresponding movement is recorded by X-ray apparatus and its velocity is measured by PIV (particle image velocimetry). It is found that, the micro-pump developed here can make the working fluid flow. The corresponding fluid flow in the micro pump is confirmed by the numerical method.展开更多
X-ray emission from metal cathodes in glow discharge (current is up to 300 mA, voltage is 1,500-4,300 V) experiments in the spectral range from 700 eV to 6 keV has been observed. The effect has been seen with a vari...X-ray emission from metal cathodes in glow discharge (current is up to 300 mA, voltage is 1,500-4,300 V) experiments in the spectral range from 700 eV to 6 keV has been observed. The effect has been seen with a variety of different metal cathodes (including AI, Sc, Ti, V, Ni, Nb, Zr, Mo, Pd, Ta, W, and Pt), as well as with different gasses (including D2, H2, Kr, Ar, and Xe) at low pressure (3-10 Torr). We present results from a variety of diagnostics, including: pinhole camera imaging; thermo luminescent detector measurements; time-resolved scintillator measurements; and a curved mica spectrometer to register X-ray spectra. Both diffuse and collimated X-ray emission have been observed.. Diffuse emission occurs in bursts of X-rays; with up to 10^5 bursts per second, with up to 10^6 photons per burst during the discharge. Collimated X-ray emission appears in the form of beamlets directed normal to the cathodes surface with a very small angular divergence; with up to 104 bursts per second, and up to 1013 photons overall up to 20 h after discharge switch off. Based on these experimental results we propose a phenomenological model of processes.展开更多
Scintillators are high-density luminescent materials that convert X-rays to visible light. Thallium doped cesium iodide (CsI:Tl) scintillation materials are widely used as converters for X-rays into visible light, wit...Scintillators are high-density luminescent materials that convert X-rays to visible light. Thallium doped cesium iodide (CsI:Tl) scintillation materials are widely used as converters for X-rays into visible light, with very high conversion efficiency of 64.000 optical photons/MeV. CsI:Tl crystals are commercially available, but, the possibility of developing these crystals into different geometric shapes, meeting the need for coupling the photosensor and reducing cost, makes this material very attractive for scientific research. The objective of this work was to study the feasibility of using radiation sensors, scintillators type, developed for use in imaging systems for X-rays. In this paper, the CsI:Tl scintillator crystal with nominal concentration of the 10-3 M was grown by the vertical Bridgman technique. The imaging performance of CsI:Tl scintillator was studied as a function of the design type and thickness, since it interferes with the light scattering and, hence, the detection efficiency plus final image resolution. The result of the diffraction X-ray analysis in the grown crystals was consistent with the pattern of a face-centered cubic (fcc) crystal structure. Slices 25 × 2 × 3 mm3 (length, thickness, height) of the crystal and mini crystals of 1 × 2 × 3 mm3 (length, thickness, height) were used for comparison in the imaging systems for X-rays. With these crystals scintillators, images of undesirable elements, such as metals in food packaging, were obtained. One-dimensional array of photodiodes and the photosensor CCD (Coupled Charge Device) component were used. In order to determine the ideal thickness of the slices of the scintillator crystal CsI:Tl, Monte Carlo method was used.展开更多
X-ray is an important tool for charactering and analyzing materials.However,current X-ray generation is cost with low efficiency.For X-ray tube,which is mostly used in laboratories,only has an energy usage of 1%with a...X-ray is an important tool for charactering and analyzing materials.However,current X-ray generation is cost with low efficiency.For X-ray tube,which is mostly used in laboratories,only has an energy usage of 1%with all other energy dissipated into tremendous heats,and it needs continuous cool water flows to cool down the cathode.It generates X-ray by the bremsstrahlungofhighenergy electronsbombardingonthecathodetarget,thebremsstrahlungwouldcontainX-raywith sufficiently high energy of the electrons.But most part of the electron energy becomes heats.In order to generate X-ray more cheaply with higher efficiency,methods about reusing the released heats during the working of the X-ray tube are brought up.Mimicking the photovoltaic effect,nonequilibrium carriers could also be injected via thermion emission when heating a metal,such injection is same to that of photonic injection which produces electromotive in a photovoltaic cell.In a photovoltaic cell the electron-hole pair generated by incident photons are nonequilibrium carriers that causes electromotive,while the thermion emission creates such electron-hole pairs via thermal excitation.Connecting metals suitable for thermion emission from the cathode into the p-n junction so that thermions as nonequilibrium carriers can be well injected into the p-n junction when the metals are heated by the cathode,with Thomson effect which enhances such injection,a thermal voltaic cell can be constructed and it can produce electricity only by heating the metals outside.Applying such thermal voltaic cell into current X-ray tube,it would produce electricity while absorbing the tremendous heats emerges when X-ray tube is working.Water flows are still used to control the temperature,but letting them boiling to keep the cathode at a temperature best for thermal voltaic cell,and the vapor may be used to drive a mini thermal power plant.In this way,the energy usage could be modified to a higher proportion.Stepwise up-conversion is possible to generate X-ray more cheaply but there are no suitable materials so far.展开更多
We study the extended gate ion sensitive structure,and deposit the titanium oxide (TiO_2) thin film on p-type (100) silicon substrate.The device of the hydrogen ion sensing structure is TiO_2/Si-substrate,and a commer...We study the extended gate ion sensitive structure,and deposit the titanium oxide (TiO_2) thin film on p-type (100) silicon substrate.The device of the hydrogen ion sensing structure is TiO_2/Si-substrate,and a commercial device of the metal oxide semiconductor field effect transistor (MOSFET) is connected to the separative sensing device.The sensitivity and linearity are measured under different work pressures.When the mixed ratio of Ar/O_2 is 80 ml·min^(-1)/20 ml·min^(-1),the work pressure is 4 Pa,the sputtering power is 150 W,and the sputtering time is two hours,the better sensing properties of the sensitivity and linearity are 36.49 mV/pH and 0.99654,respectively.However,some instruments are analyzed the surface of TiO_2 membrane,such as X-ray diffraction (XRD) and Auger Electron Spectrometer (AES).The characteristics of TiO_2 thin film can be demonstrated.展开更多
The process of treating the PET tire cord (210D/3×2) by low temperature nitrogen and airlow temperature plasma and dipping in RFL (resorcinol-formaldehyde-latex) adhesive system wasstudied.The H-pull test value c...The process of treating the PET tire cord (210D/3×2) by low temperature nitrogen and airlow temperature plasma and dipping in RFL (resorcinol-formaldehyde-latex) adhesive system wasstudied.The H-pull test value can be improved from about 35 N/cm of untreated sample to 55N/cm of nitrogen plasma treated sample.The photograph of SEM demonstrates that the adhe-sion between nitrogen plasma treated tire cord and rubber has reached the strength of rubber.Airplasma treatment has bad effect on adhesion improvement.The mechanism of plasma treatment on the surface of the PET tire cord and the mechanism ofadhesion improvement are investigated by diffuse reflection infra-red spectrum and XPS (X-rayphotoelectron spectroscopy).From the spectral analysis,it is believed that the contribution to im-provement of the adhesion of the tire cord is the oxidation on the surface.The serious breaking ofthe chemical bonds on surface can cause the adhesion inferior.展开更多
The advancement in grazing incidence X-ray scattering(GIWAXS)techniques at synchrotron radiation facilities has significantly deepened our understanding of semiconducting polymers.However,investigation of ultrathin po...The advancement in grazing incidence X-ray scattering(GIWAXS)techniques at synchrotron radiation facilities has significantly deepened our understanding of semiconducting polymers.However,investigation of ultrathin polymer films under tensile conditions poses challenge,primarily due to limitations associated with the lack of suitable sample preparation methods and new stretching devices.This study addresses these limitations by designing and developing an in-situ temperature-controllable stretching sample stage,which enables real-time structural measurements of ultrathin polymer films at Beijing Synchrotron Radiation Facility.In particular,we report,for the first time,in-situ GIWAXS results of representative semiconducting polymer thin films under variable-temperature stretching.This research has overcome the limitations imposed by sample constraints,thus facilitating the achievement of valuable insights into the behavior of ultrathin polymer films under tensile conditions.Distinct changes in the molecular ordering and packing within the polymer thin films as a result of increasing applied strain and temperature have been uncovered.This study promotes future developments in the field,thus enabling the design and optimization of intrinsically stretchable electronic devices and other technologically relevant applications.展开更多
Metal halide perovskites(MHPs)have demonstrated excellent performances in detection of X-rays and gamma-rays.Most studies focus on improving the sensitivity of single-pixel MHP detectors.However,little work pays atten...Metal halide perovskites(MHPs)have demonstrated excellent performances in detection of X-rays and gamma-rays.Most studies focus on improving the sensitivity of single-pixel MHP detectors.However,little work pays attention to the dark current,which is crucial for the back-end circuit integration.Herein,the requirement of dark current is quantitatively evaluated as low as 10^(−9)A/cm^(2)for X-ray imagers integrated on pixel circuits.Moreover,through the semiconductor device analysis and simulation,we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current(J_(T))and the generation-recombination current(J_(g-r)).The typical observed failures of p-n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects.This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 52173166 and 22105083)the Project of Science and Technology Development Plan of Jilin Province (No. 20230101025JC)+1 种基金Xiaomi Young Scholar Projectthe Fundamental Research Funds for the Central Universities, JLU, and JLUSTIRT (2017TD-06)。
文摘The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medicine and safety inspections,has increased the exposure risk of irradiation safety workers.Traditional irradiation detectors are stiff and incompatible with the skin,and lack human health monitoring function,thus it’s vital to apply these flexible sensors for irradiation warning.Here,we report a novel composite gel device synthesized through solution processes by combining the Cs_(3)Cu_(2)I_(5):Zn nanoscintillator with the pre-patterned biocompatible gel,exhibiting a bi-functional response to motion/vibration sensing and sensitive irradiation warning.These wearable devices achieve a pressure sensitivity of up to 34 kPa^(-1)in a low-pressure range (0–3 kPa),a low limit of detection (LoD) down to 1.4 Pa,enabling health monitoring functions of pulse monitoring,finger bending,and elbow bending.Simultaneously,the device scintillates under X-ray irradiation among a wide dose rate range of 54–1167μGy_(air)s^(-1).The robust device shows no obvious signal loss after 4000 compression cycles and also excellent irradiation resistance over 50 days,broadening the path for designing and realizing new functional wearable devices.
文摘The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu-Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu-K and Cu-K/3 was around 0.14 ± 0.02 (J/Sr) and 0.04 ±0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (〉 15 keV) was around 0.12± 0.02 (J/Sr).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675019,12105020,and 12075031)the Bud Project of Beijing Academy of Science and Technology(Grant No.BGS202106)the National Key Research and Development Program of China(Grant No.2021YFF0701202)
文摘A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polycapillary x-ray optics to determine the illuminating region of the incident x-ray beam on the input side of the optics.The CCD detector placed downstream of the polycapillary x-ray optics ensured that the incident x-ray beam controlled by the pinhole irradiated a specific region of the input surface of the optics.The intensity of the output beam of the polycapillary x-ray optics was obtained from the far-field image of the output beam of the optics captured by CCD detector.As an application example,the focal spot size,gain in power density,transmission efficiency,and beam divergence of different parts of a polycapillary focusing x-ray lenses(PFXRL)were measured by a pinhole and CCD detector.Three pinholes with diameters of 500,1000,and 2000μm were used to adjust the diameter of the incident x-ray beam illuminating the PFXRL from 500μm to the entire surface of the input side of the PFXRL.The focal spot size of the PFXRL,gain in power density,transmission efficiency,and beam divergence ranged from 27.1μm to 34.6μm,400 to 3460,26.70%to 5.38%,and 16.8 mrad to 84.86 mrad,respectively.
文摘Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures that meet the increased requirements are a priority in our time. X-ray examinations are of particular importance for the orthopedic and traumatological clinics, where they provide information about presence of a fracture in the patient’s body, about the concrete operation performed or about the effect of a suitable treatment. Along with their benefits X-rays have also a harmful effect. This requires special care to protect from this radiation. In this direction, research is constantly being done to improve the quality of radiation protection. Park MR, Lee KM and co-authors, compare the dose load obtained using C-arm and O-arm X-ray systems (which have the capability of combined 2D fluoroscopy and 3D computed tomography imaging). In their study, an orthopedic surgical procedure using C-arm and O-arm systems in 2D fluoroscopy modes was simulated. The radiation doses to susceptible organs of the operators were investigated. He results obtained show that the O-arm system delivered higher doses to the sensitive organs of the operator in all configurations [1]. The article of Stephen Balte briefly reviews the available technologies for measuring or estimation of patient skin dose in the interventional fluoroscopic environment, created by various X-ray equipment including C-arm systems. Given that many patients require multiple procedures, this documentation also aids in the planning of follow up visits [2]. Chong Hing Wong, Yoshihisa Kotani and co-authors evaluate the radiation exposures (RE) to the patient and surgeon during minimally invasive lumbar spine surgery with instrumentation using C-arm image intensifier or O-arm intraoperative CT. The results they get are in favor of the O-arm system [3]. The article “Virtual fluoroscopy for intraoperative C-arm positioning and radiation dose reduction” discusses positioning of an intraoperative C-arm system to achieve clear visualization of a particular anatomical feature by a system for virtual fluoroscopy (called FluoroSim) that could dramatically reduce time and received dose during the procedures. FluoroSim was found to reduce the radiation exposure required for C-arm positioning without reducing positioning time or accuracy, providing a potentially valuable tool to assist surgeons [4]. In our study, we performed practical measurements to show how the patient can be treated by applying most effective radiation protection when using a mobile C-arm X-ray system. For the study, we used exposure upon a phantom placed on the patient’s table. For an X-ray shielding, we used a protective apron with a lead equivalent of 1 mm, placed in two layers on the phantom. In each subsequent series of exposures, the protective apron was placed on the phantom, in a different position relative to the X-ray beam. The general conclusion of our study is that in order to obtain maximum protection from scattered radiation when using C-arm X-ray systems, the patient must be protected by a shielding with a suitable lead equivalent for the procedure performed which must be placed between patient’s body and X-ray tube, perpendicular to the X-ray beam pointed toward the region of interest.
基金supported by the project“PARIDE”(Perovskite Advanced Radiotherapy&Imaging Detectors),funded under the Regional Research and Innovation Programme POR-FESR Lazio 2014-2020(project number:A0375-2020-36698).
文摘Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.
文摘Experimental study is performed to design and develop a cylindrical micro-pump driven by expansion and contraction of the heat deformation material, whose variation is caused with the aid of heating and cooling properties of Peltier devices. The pump consists of the diffuser valve unit, the heat deformation material unit, the nozzle valve unit, the Peltier devices and the cover. The input current of the Peltier devices is controlled by the bipolar power supply so that the Peltier devices are heated and cooled periodically. The working fluid flow in the micro-pump is caused by the periodical thermal deformation of material which is caused by the periodical heating and cooling of the Peltier devices. In order to measure the fluid flow in the micro-pump, micro air bubbles are employed as a tracer. The corresponding movement is recorded by X-ray apparatus and its velocity is measured by PIV (particle image velocimetry). It is found that, the micro-pump developed here can make the working fluid flow. The corresponding fluid flow in the micro pump is confirmed by the numerical method.
文摘X-ray emission from metal cathodes in glow discharge (current is up to 300 mA, voltage is 1,500-4,300 V) experiments in the spectral range from 700 eV to 6 keV has been observed. The effect has been seen with a variety of different metal cathodes (including AI, Sc, Ti, V, Ni, Nb, Zr, Mo, Pd, Ta, W, and Pt), as well as with different gasses (including D2, H2, Kr, Ar, and Xe) at low pressure (3-10 Torr). We present results from a variety of diagnostics, including: pinhole camera imaging; thermo luminescent detector measurements; time-resolved scintillator measurements; and a curved mica spectrometer to register X-ray spectra. Both diffuse and collimated X-ray emission have been observed.. Diffuse emission occurs in bursts of X-rays; with up to 10^5 bursts per second, with up to 10^6 photons per burst during the discharge. Collimated X-ray emission appears in the form of beamlets directed normal to the cathodes surface with a very small angular divergence; with up to 104 bursts per second, and up to 1013 photons overall up to 20 h after discharge switch off. Based on these experimental results we propose a phenomenological model of processes.
基金FAPESP(Foundation Research of the State of Sao Paulo)for financial support.
文摘Scintillators are high-density luminescent materials that convert X-rays to visible light. Thallium doped cesium iodide (CsI:Tl) scintillation materials are widely used as converters for X-rays into visible light, with very high conversion efficiency of 64.000 optical photons/MeV. CsI:Tl crystals are commercially available, but, the possibility of developing these crystals into different geometric shapes, meeting the need for coupling the photosensor and reducing cost, makes this material very attractive for scientific research. The objective of this work was to study the feasibility of using radiation sensors, scintillators type, developed for use in imaging systems for X-rays. In this paper, the CsI:Tl scintillator crystal with nominal concentration of the 10-3 M was grown by the vertical Bridgman technique. The imaging performance of CsI:Tl scintillator was studied as a function of the design type and thickness, since it interferes with the light scattering and, hence, the detection efficiency plus final image resolution. The result of the diffraction X-ray analysis in the grown crystals was consistent with the pattern of a face-centered cubic (fcc) crystal structure. Slices 25 × 2 × 3 mm3 (length, thickness, height) of the crystal and mini crystals of 1 × 2 × 3 mm3 (length, thickness, height) were used for comparison in the imaging systems for X-rays. With these crystals scintillators, images of undesirable elements, such as metals in food packaging, were obtained. One-dimensional array of photodiodes and the photosensor CCD (Coupled Charge Device) component were used. In order to determine the ideal thickness of the slices of the scintillator crystal CsI:Tl, Monte Carlo method was used.
文摘X-ray is an important tool for charactering and analyzing materials.However,current X-ray generation is cost with low efficiency.For X-ray tube,which is mostly used in laboratories,only has an energy usage of 1%with all other energy dissipated into tremendous heats,and it needs continuous cool water flows to cool down the cathode.It generates X-ray by the bremsstrahlungofhighenergy electronsbombardingonthecathodetarget,thebremsstrahlungwouldcontainX-raywith sufficiently high energy of the electrons.But most part of the electron energy becomes heats.In order to generate X-ray more cheaply with higher efficiency,methods about reusing the released heats during the working of the X-ray tube are brought up.Mimicking the photovoltaic effect,nonequilibrium carriers could also be injected via thermion emission when heating a metal,such injection is same to that of photonic injection which produces electromotive in a photovoltaic cell.In a photovoltaic cell the electron-hole pair generated by incident photons are nonequilibrium carriers that causes electromotive,while the thermion emission creates such electron-hole pairs via thermal excitation.Connecting metals suitable for thermion emission from the cathode into the p-n junction so that thermions as nonequilibrium carriers can be well injected into the p-n junction when the metals are heated by the cathode,with Thomson effect which enhances such injection,a thermal voltaic cell can be constructed and it can produce electricity only by heating the metals outside.Applying such thermal voltaic cell into current X-ray tube,it would produce electricity while absorbing the tremendous heats emerges when X-ray tube is working.Water flows are still used to control the temperature,but letting them boiling to keep the cathode at a temperature best for thermal voltaic cell,and the vapor may be used to drive a mini thermal power plant.In this way,the energy usage could be modified to a higher proportion.Stepwise up-conversion is possible to generate X-ray more cheaply but there are no suitable materials so far.
文摘We study the extended gate ion sensitive structure,and deposit the titanium oxide (TiO_2) thin film on p-type (100) silicon substrate.The device of the hydrogen ion sensing structure is TiO_2/Si-substrate,and a commercial device of the metal oxide semiconductor field effect transistor (MOSFET) is connected to the separative sensing device.The sensitivity and linearity are measured under different work pressures.When the mixed ratio of Ar/O_2 is 80 ml·min^(-1)/20 ml·min^(-1),the work pressure is 4 Pa,the sputtering power is 150 W,and the sputtering time is two hours,the better sensing properties of the sensitivity and linearity are 36.49 mV/pH and 0.99654,respectively.However,some instruments are analyzed the surface of TiO_2 membrane,such as X-ray diffraction (XRD) and Auger Electron Spectrometer (AES).The characteristics of TiO_2 thin film can be demonstrated.
文摘The process of treating the PET tire cord (210D/3×2) by low temperature nitrogen and airlow temperature plasma and dipping in RFL (resorcinol-formaldehyde-latex) adhesive system wasstudied.The H-pull test value can be improved from about 35 N/cm of untreated sample to 55N/cm of nitrogen plasma treated sample.The photograph of SEM demonstrates that the adhe-sion between nitrogen plasma treated tire cord and rubber has reached the strength of rubber.Airplasma treatment has bad effect on adhesion improvement.The mechanism of plasma treatment on the surface of the PET tire cord and the mechanism ofadhesion improvement are investigated by diffuse reflection infra-red spectrum and XPS (X-rayphotoelectron spectroscopy).From the spectral analysis,it is believed that the contribution to im-provement of the adhesion of the tire cord is the oxidation on the surface.The serious breaking ofthe chemical bonds on surface can cause the adhesion inferior.
基金the support from the Science Fund for Distinguished Young Scholars of Tianjin (23JCJQJC00240)the Fundamental Research Funds for the Central Universities+2 种基金the Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Peiyang Scholar Program of Tianjin Universitysupported by the National Natural Science Foundation of China (12375302)。
文摘The advancement in grazing incidence X-ray scattering(GIWAXS)techniques at synchrotron radiation facilities has significantly deepened our understanding of semiconducting polymers.However,investigation of ultrathin polymer films under tensile conditions poses challenge,primarily due to limitations associated with the lack of suitable sample preparation methods and new stretching devices.This study addresses these limitations by designing and developing an in-situ temperature-controllable stretching sample stage,which enables real-time structural measurements of ultrathin polymer films at Beijing Synchrotron Radiation Facility.In particular,we report,for the first time,in-situ GIWAXS results of representative semiconducting polymer thin films under variable-temperature stretching.This research has overcome the limitations imposed by sample constraints,thus facilitating the achievement of valuable insights into the behavior of ultrathin polymer films under tensile conditions.Distinct changes in the molecular ordering and packing within the polymer thin films as a result of increasing applied strain and temperature have been uncovered.This study promotes future developments in the field,thus enabling the design and optimization of intrinsically stretchable electronic devices and other technologically relevant applications.
基金supported by the Major State Basic Research Development Program of China(No.2021YFB3201000)the National Natural Science Foundation of China(Grant Nos.62074066,62134003,and 12050005)+2 种基金the Fund for Innovative Research Groups of the Natural Science Foundation of Hubei Province(Nos.2021CFA036 and 2020CFA034)Shenzhen Basic Research Program(No.JCYJ20200109115212546)the Fundamental Research Funds for the Central Universities.
文摘Metal halide perovskites(MHPs)have demonstrated excellent performances in detection of X-rays and gamma-rays.Most studies focus on improving the sensitivity of single-pixel MHP detectors.However,little work pays attention to the dark current,which is crucial for the back-end circuit integration.Herein,the requirement of dark current is quantitatively evaluated as low as 10^(−9)A/cm^(2)for X-ray imagers integrated on pixel circuits.Moreover,through the semiconductor device analysis and simulation,we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current(J_(T))and the generation-recombination current(J_(g-r)).The typical observed failures of p-n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects.This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.