In this paper, Ti-C-N nanocomposite films are deposited under different nitrogen flow rates by pulsed bias arc ion plating using Ti and graphite targets in the Ar/N2 mixture gas. The surface morphologies, compositions...In this paper, Ti-C-N nanocomposite films are deposited under different nitrogen flow rates by pulsed bias arc ion plating using Ti and graphite targets in the Ar/N2 mixture gas. The surface morphologies, compositions, microstructures, and mechanical properties of the Ti-C-N films are investigated systematically by field emission scanning electron mi- croscopy (FE-SEM), x-ray photoelectron spectroscopy (XPS), grazing incident x-ray diffraction (GIXRD), Raman spectra, and nano-indentation. The results show that the nanocrystalline Ti(C,N) phase precipitates in the film from GIXRD and XPS analysis, and Raman spectra prove the presence of diamond-like carbon, indicating the formation of nanocomposite film with microstructures comprising nanocrystalline Ti(C,N) phase embedded into a diamond-like matrix. The nitrogen flow rate has a significant effect on the composition, structure, and properties of the film. The nano-hardness and elastic modulus first increase and then decrease as nitrogen flow rate increases, reaching a maximum of 34.3 GPa and 383.2 GPa, at a nitrogen flow rate of 90 sccm, respectively.展开更多
The highly (1301) oriented triple system of [CoPt/C]n/Ag films was deposited on glass substrates by DC and RF magnetron sputtering. After annealing at 600℃ for 30 min, thin films become magnetically hard with coerc...The highly (1301) oriented triple system of [CoPt/C]n/Ag films was deposited on glass substrates by DC and RF magnetron sputtering. After annealing at 600℃ for 30 min, thin films become magnetically hard with coercivities in the range of 160-875 kA/m because of high anisotropy associated with the L10 ordered phase. C doping plays an important role in improving (001) texture and reducing the intergrain interactions. The oriented growth of CoPt films was influenced strongly by the number of repetitions (n) of CoPt/C. By controlling the C content and the number of repetitions (n) of CoPt/C, nearly perfect (001) orientation can be obtained in the [CoPt3nm/C3nm]5/Ag50 nm.展开更多
Cubic boron nitride (c-BN) films are prepared by the radio frequency magnetron sputtering technique. The stresses and crystallinities of the films are estimated by the Fourier transform infrared spectroscopy of c-BN...Cubic boron nitride (c-BN) films are prepared by the radio frequency magnetron sputtering technique. The stresses and crystallinities of the films are estimated by the Fourier transform infrared spectroscopy of c-BN samples, including the peak shifts and varieties of full widths at half maximum. The effects of the B-C-N interlayer and the two-stage deposition method on the c-BN films are investigated. Then the thick and stable c-BN films are prepared by a combination of the two methods. The properties of the interlayer and film are also characterized.展开更多
A new method has been studied to obtain TiN-Ti(C,N)composite film by laser-induced re- action in order to modify the surface properties of substrate.An apparatus for this new technology has been developed.The main rea...A new method has been studied to obtain TiN-Ti(C,N)composite film by laser-induced re- action in order to modify the surface properties of substrate.An apparatus for this new technology has been developed.The main reaction,the influence of main processing parameters on the formation, composition,microstructure and properties of the film have been researched.The average hardness of the film is up to HK 2700-2800.The wear resist- ance of the film is higher than that of the substrate by a factor of 9-11;and the film has good adhesive strength with the substrate.展开更多
[ Objective ] The study aimed at treating wastewater treatment plant (WWTP) effluent by using bio-film reactor with filamentous bamboo as bio-carrier. [ Method] With the aid of a continuous flow reactor, a bio-film ...[ Objective ] The study aimed at treating wastewater treatment plant (WWTP) effluent by using bio-film reactor with filamentous bamboo as bio-carrier. [ Method] With the aid of a continuous flow reactor, a bio-film reactor using filamentous bamboo as bio-carrier was used to treat WWTP effluent with low C/N ratio, and the removal effects of CODc,, TN (total nitrogen), and NO3--N in the wastewater were analyzed.[ Result ] The average removal rates of CODcr, TN, and NO3- -N reached 47.7%, 23.6% and 34.5% when the C/N ratio of influent was around 2. In addi- tion, a stable bio-film was formed very well in the secondary effluent with low C/N ratio and hardly degradable organic pollutants. The pollutants could be removed effectively because of the excellent surface characteristics and compositions of filamentous bamboo. [ Conclusion] The research provides a new method to treat WWTP effluent with low C/N ratio.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51271047)
文摘In this paper, Ti-C-N nanocomposite films are deposited under different nitrogen flow rates by pulsed bias arc ion plating using Ti and graphite targets in the Ar/N2 mixture gas. The surface morphologies, compositions, microstructures, and mechanical properties of the Ti-C-N films are investigated systematically by field emission scanning electron mi- croscopy (FE-SEM), x-ray photoelectron spectroscopy (XPS), grazing incident x-ray diffraction (GIXRD), Raman spectra, and nano-indentation. The results show that the nanocrystalline Ti(C,N) phase precipitates in the film from GIXRD and XPS analysis, and Raman spectra prove the presence of diamond-like carbon, indicating the formation of nanocomposite film with microstructures comprising nanocrystalline Ti(C,N) phase embedded into a diamond-like matrix. The nitrogen flow rate has a significant effect on the composition, structure, and properties of the film. The nano-hardness and elastic modulus first increase and then decrease as nitrogen flow rate increases, reaching a maximum of 34.3 GPa and 383.2 GPa, at a nitrogen flow rate of 90 sccm, respectively.
基金This work was financially supported by the National Natural Science Foundation of China (No. 10574085) and the Natural Science Foundation of Shanxi Province, China (No. 20041032)
文摘The highly (1301) oriented triple system of [CoPt/C]n/Ag films was deposited on glass substrates by DC and RF magnetron sputtering. After annealing at 600℃ for 30 min, thin films become magnetically hard with coercivities in the range of 160-875 kA/m because of high anisotropy associated with the L10 ordered phase. C doping plays an important role in improving (001) texture and reducing the intergrain interactions. The oriented growth of CoPt films was influenced strongly by the number of repetitions (n) of CoPt/C. By controlling the C content and the number of repetitions (n) of CoPt/C, nearly perfect (001) orientation can be obtained in the [CoPt3nm/C3nm]5/Ag50 nm.
文摘Cubic boron nitride (c-BN) films are prepared by the radio frequency magnetron sputtering technique. The stresses and crystallinities of the films are estimated by the Fourier transform infrared spectroscopy of c-BN samples, including the peak shifts and varieties of full widths at half maximum. The effects of the B-C-N interlayer and the two-stage deposition method on the c-BN films are investigated. Then the thick and stable c-BN films are prepared by a combination of the two methods. The properties of the interlayer and film are also characterized.
文摘A new method has been studied to obtain TiN-Ti(C,N)composite film by laser-induced re- action in order to modify the surface properties of substrate.An apparatus for this new technology has been developed.The main reaction,the influence of main processing parameters on the formation, composition,microstructure and properties of the film have been researched.The average hardness of the film is up to HK 2700-2800.The wear resist- ance of the film is higher than that of the substrate by a factor of 9-11;and the film has good adhesive strength with the substrate.
基金Supported by the Scientific Research Foundation for Postgraduates of ZhengZhou University (A1003) Open Foundation of Provincial Key Laboratory of Environmental Material and Environmental Engineering (K11027)
文摘[ Objective ] The study aimed at treating wastewater treatment plant (WWTP) effluent by using bio-film reactor with filamentous bamboo as bio-carrier. [ Method] With the aid of a continuous flow reactor, a bio-film reactor using filamentous bamboo as bio-carrier was used to treat WWTP effluent with low C/N ratio, and the removal effects of CODc,, TN (total nitrogen), and NO3--N in the wastewater were analyzed.[ Result ] The average removal rates of CODcr, TN, and NO3- -N reached 47.7%, 23.6% and 34.5% when the C/N ratio of influent was around 2. In addi- tion, a stable bio-film was formed very well in the secondary effluent with low C/N ratio and hardly degradable organic pollutants. The pollutants could be removed effectively because of the excellent surface characteristics and compositions of filamentous bamboo. [ Conclusion] The research provides a new method to treat WWTP effluent with low C/N ratio.