Increasing evidence has shown that gut microbiota plays important roles in metabolizing large molecular polyphenols to bioavailable and bioactive microbial metabolites.Theaflavin(TF)is one of the major color compounds...Increasing evidence has shown that gut microbiota plays important roles in metabolizing large molecular polyphenols to bioavailable and bioactive microbial metabolites.Theaflavin(TF)is one of the major color compounds in black tea and has demonstrated anti-inflammation,antioxidant,and anticancer effects properties.However,little is known about the metabolism of TF by gut microbiota in vivo.In this study,following the administration of TF to mice,the C-ring cleavage metabolites,dihydro-and tetrahydro-theaflavin(DH-TF and TH-TF)were detected in mouse feces by LC-MS and validated by authentic standards from in situ chemical reaction.The observation of the C-ring cleavage metabolites in TF-treated conventionalized mice but not in germ-free(GF)mice confirmed the role of gut microbiota in cleaving the C-rings of TF.The detection of DH-TF from the anaerobic incubation of TF with catechin-converting gut bacteria,Eggerthella lenta(Eggerth),suggested that the microbes with the capacity to cleave the C-ring of catechins were able to metabolize TF following the same mechanism.Additionally,three small phenolic metabolites were detected in mouse feces,and one of them was primarily detected in SPF mice not GF mice,which revealed that TF,subsequent to the cleaved C-ring,can be further metabolized into smaller phenolic metabolites by gut microbiota.Dose-dependent production of these metabolites were observed from the administration of 100 mg/kg to 400 mg/kg body weight of TF.In conclusion,gut microbiota can metabolize TF to the open-ring metabolites and the phenolic metabolites through the C-ring cleavage in mice.展开更多
Obiectives To study the mineralization of 2,4-D in clay and clay loam Egyptian soils under subtropical conditions over a period of 90 d. Methods Using 14C-ring labelled pesticide, laboratory studies under aerobic and ...Obiectives To study the mineralization of 2,4-D in clay and clay loam Egyptian soils under subtropical conditions over a period of 90 d. Methods Using 14C-ring labelled pesticide, laboratory studies under aerobic and anaerobic conditions were conducted. 14C-activity in solutions was directly determined by liquid scintillation counting. Unextractable soil residues were determined by combustion. The nature of methanolic '4C-residues was determined by thin layer and high performance liquid chromatographic analysis. Results Under aerobic conditions 10%-14% of applied dose was mineralized during 90 d irrespective of soil type. The soil extractable pesticide residues decreased with time and the bound residues gradually increased. The highest binding capacity of about 26%-29% was observed in clay soil under aerobic conditions after 90 d. A good balance sheet was obtained and the percentage recovery was generally between 91% and 100%. Conclusion The mineralization of 2,4-D in clay soil was higher than that in clay loam soil under anaerobic conditions. Under aerobic conditions, the soil type had no influence on mineralizaion capacity of 2,4-D during 90 d. The soil binding increased with time whereby the extractable 14C-residues simultaneously decreased. Chromatographic analysis of the methanol extractable l4C-residues of soils revealed the presence of 2,4-D as a main product together with 2,4-dichlorophenol.展开更多
The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop directio...The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin.展开更多
A brief review and analysis of two historical models of the electron, the charged spinning sphere and Goudsmit and Uhlenbeck’s concept, is presented. It is shown that the enormous potential of classical electrodynami...A brief review and analysis of two historical models of the electron, the charged spinning sphere and Goudsmit and Uhlenbeck’s concept, is presented. It is shown that the enormous potential of classical electrodynamics has been underutilized in particle physics. Such observation leads to discovery of a principal component in the electron inner structure—the charged c-ring. The intrinsic (fundamental) electron model based on the charged c-ring successfully explains the ontology of the charge fractionation in quantum chromodynamics and the formation of Cooper pairs in superconductivity. The c-ring properties are explained on the basis of the General Compton Conditions as defined. Properties of the charged c-ring include the explanation of the boundary conditions, electro-magnetostatic field configuration, self-mass, spin, magnetic moment, and the gyromagnetic ratio. The self-mass of the intrinsic electron is 100% electro-magnetostatic and it is shown how to compute its value. The classical-quantum divide no longer exists. Relation between the intrinsic electron and the electron is fundamentally defined. The electron is the composite fermion consisting of the intrinsic electron and the neutrino. The ontology of the anomaly in the electron magnetic moment is demonstrated—it is due to the addition of the neutrino magnetic moment to the overall electron magnetic moment. The intrinsic electron replaces the W? boson in particle physics, resulting in a fundamental implication for the Standard Model.展开更多
文摘Increasing evidence has shown that gut microbiota plays important roles in metabolizing large molecular polyphenols to bioavailable and bioactive microbial metabolites.Theaflavin(TF)is one of the major color compounds in black tea and has demonstrated anti-inflammation,antioxidant,and anticancer effects properties.However,little is known about the metabolism of TF by gut microbiota in vivo.In this study,following the administration of TF to mice,the C-ring cleavage metabolites,dihydro-and tetrahydro-theaflavin(DH-TF and TH-TF)were detected in mouse feces by LC-MS and validated by authentic standards from in situ chemical reaction.The observation of the C-ring cleavage metabolites in TF-treated conventionalized mice but not in germ-free(GF)mice confirmed the role of gut microbiota in cleaving the C-rings of TF.The detection of DH-TF from the anaerobic incubation of TF with catechin-converting gut bacteria,Eggerthella lenta(Eggerth),suggested that the microbes with the capacity to cleave the C-ring of catechins were able to metabolize TF following the same mechanism.Additionally,three small phenolic metabolites were detected in mouse feces,and one of them was primarily detected in SPF mice not GF mice,which revealed that TF,subsequent to the cleaved C-ring,can be further metabolized into smaller phenolic metabolites by gut microbiota.Dose-dependent production of these metabolites were observed from the administration of 100 mg/kg to 400 mg/kg body weight of TF.In conclusion,gut microbiota can metabolize TF to the open-ring metabolites and the phenolic metabolites through the C-ring cleavage in mice.
基金This work was supported by FAO/IAEA-division for its financial support.
文摘Obiectives To study the mineralization of 2,4-D in clay and clay loam Egyptian soils under subtropical conditions over a period of 90 d. Methods Using 14C-ring labelled pesticide, laboratory studies under aerobic and anaerobic conditions were conducted. 14C-activity in solutions was directly determined by liquid scintillation counting. Unextractable soil residues were determined by combustion. The nature of methanolic '4C-residues was determined by thin layer and high performance liquid chromatographic analysis. Results Under aerobic conditions 10%-14% of applied dose was mineralized during 90 d irrespective of soil type. The soil extractable pesticide residues decreased with time and the bound residues gradually increased. The highest binding capacity of about 26%-29% was observed in clay soil under aerobic conditions after 90 d. A good balance sheet was obtained and the percentage recovery was generally between 91% and 100%. Conclusion The mineralization of 2,4-D in clay soil was higher than that in clay loam soil under anaerobic conditions. Under aerobic conditions, the soil type had no influence on mineralizaion capacity of 2,4-D during 90 d. The soil binding increased with time whereby the extractable 14C-residues simultaneously decreased. Chromatographic analysis of the methanol extractable l4C-residues of soils revealed the presence of 2,4-D as a main product together with 2,4-dichlorophenol.
基金supports from the National Research Foundation of Korea funded by the Ministry of Education (No. 2018R1A6A1A03024509, NRF-2023R1A2C1005121)
文摘The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin.
基金jointly supported by the National Natural Science Foundation of China(No.22273093,No.41905018,No.21903080)the Ministry of Science and Technology of China(No.2022YFF0606500)。
文摘A brief review and analysis of two historical models of the electron, the charged spinning sphere and Goudsmit and Uhlenbeck’s concept, is presented. It is shown that the enormous potential of classical electrodynamics has been underutilized in particle physics. Such observation leads to discovery of a principal component in the electron inner structure—the charged c-ring. The intrinsic (fundamental) electron model based on the charged c-ring successfully explains the ontology of the charge fractionation in quantum chromodynamics and the formation of Cooper pairs in superconductivity. The c-ring properties are explained on the basis of the General Compton Conditions as defined. Properties of the charged c-ring include the explanation of the boundary conditions, electro-magnetostatic field configuration, self-mass, spin, magnetic moment, and the gyromagnetic ratio. The self-mass of the intrinsic electron is 100% electro-magnetostatic and it is shown how to compute its value. The classical-quantum divide no longer exists. Relation between the intrinsic electron and the electron is fundamentally defined. The electron is the composite fermion consisting of the intrinsic electron and the neutrino. The ontology of the anomaly in the electron magnetic moment is demonstrated—it is due to the addition of the neutrino magnetic moment to the overall electron magnetic moment. The intrinsic electron replaces the W? boson in particle physics, resulting in a fundamental implication for the Standard Model.