New cADPR mimic 5 that integrates the simplified nucleobase and ribose was designed and synthesized by using Cu(I)-catalyzed Huisgen [3+2] cycloaddition to build the simplified triazole nucleobase and microwave-ass...New cADPR mimic 5 that integrates the simplified nucleobase and ribose was designed and synthesized by using Cu(I)-catalyzed Huisgen [3+2] cycloaddition to build the simplified triazole nucleobase and microwave-assisted reaction to carry out intramolecular pyrophosphorylation. Primary biological investigation showed that the introduction of an ether strand to replace northern and southern riboses could retain calcium inducing activity, but the introduction of a carbon strand to replace the northern ribose could lead to decreased activity.展开更多
A facile and efficient protocol for the synthesis of sulfur substituted-cyclopyrophosphate of cIDPRE(P_S^1-cIDPRE) was developed.The key step was the cyclization process which was completed by the sulfur substituted...A facile and efficient protocol for the synthesis of sulfur substituted-cyclopyrophosphate of cIDPRE(P_S^1-cIDPRE) was developed.The key step was the cyclization process which was completed by the sulfur substituted cyclization precursor 1b via the one-pot phosphoramidite strategy.展开更多
AIMS: β-adrenergic augmentation of Ca2+ sparks and cardiac contractility has been functionally linked to phosphorylation-dependent dissociation of FK506 binding protein 12.
Human mesenchymal stem cells(MSCs)are a rare population of non-hematopoietic stem cells with multilineage potential,originally identified in the bone marrow.Due to the lack of a single specific marker,MSCs can be reco...Human mesenchymal stem cells(MSCs)are a rare population of non-hematopoietic stem cells with multilineage potential,originally identified in the bone marrow.Due to the lack of a single specific marker,MSCs can be recognized and isolated by a series of features such as plastic adherence,a panel of surface markers,the clonogenic and the differentiation abilities.The recognized role of MSCs in the regulation of hemopoiesis,in cell-degeneration protection and in the homeostasis of mesodermal tissues through their differentiation properties,justifies the current interest in identifying the biochemical signals produced by MSCs and their active crosstalk in tissue environments.Only recently have extracellular nucleotides(eNTPs)and their metabolites been included among the molecular signals produced by MSCs.These molecules are active on both ionotropic and metabotropic receptors present in most cell types.MSCs possess a significant display of these receptors and of nucleotide processing ectoenzymes on their plasma membrane.Thus,from their niche,MSCs give a significant contribution to the complex signaling network of eNTPs and its derivatives.Recent studies have demonstrated the multifaceted aspects of eNTP metabolism and their signal transduction in MSCs and revealed important roles in specifying differentiation lineages and modulating MSC physiology and communication with other cells.This review discusses the roles of eNTPs,their receptors and ectoenzymes,and the relevance of the signaling network and MSC functions,and also focuses on the importance of this emerging area of interest for future MSC-based cell therapies.展开更多
An optimized approach for the synthesis of N^1-ethoxymethyl-substituted cyclic inosine diphosphoribose(cIDPRE),an analogue of cyclic adenosine diphosphoribose(cADPR),has been developed via microwave-assisted intra...An optimized approach for the synthesis of N^1-ethoxymethyl-substituted cyclic inosine diphosphoribose(cIDPRE),an analogue of cyclic adenosine diphosphoribose(cADPR),has been developed via microwave-assisted intramolecular cyclization. The target compound has been successfully obtained through N^1-substitution,phosphorylation,cyclization and deprotection.By using this method,8-amino and bromo-substituted cIDPRE analogues were successfully obtained in good yield.The new approach has greatly shortened the synthetic route and enhanced the overall efficiency.展开更多
The concept advanced by Berridge and colleagues that intracellular Ca2+-stores can be mobilized in an agonist-dependent and messenger(IP3)-mediated manner has put Ca 2+-mobilization at the center stage of signal trans...The concept advanced by Berridge and colleagues that intracellular Ca2+-stores can be mobilized in an agonist-dependent and messenger(IP3)-mediated manner has put Ca 2+-mobilization at the center stage of signal transduction mechanisms.During the late 1980s,we showed that Ca2+-stores can be mobilized by two other messengers unrelated to inositol trisphosphate(IP 3) and identified them as cyclic ADP-ribose(cADPR),a novel cyclic nucleotide from NAD,and nicotinic acid adenine dinucleotide phosphate(NAADP),a linear metabolite of NADP.Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms.Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum,while that of NAADP is the two pore channel in endolysosomes. As cADPR and NAADP are structurally and functionally distinct,it is remarkable that they are synthesized by the same enzyme.They are thus fraternal twin messengers.We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and,through homology,found its mammalian homolog,CD38.Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion,susceptibility to bacterial infection,to social behavior of mice through modulating neuronal oxytocin secretion.We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis.This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.展开更多
Since the first demonstration of sperm entry into the fertilized eggs of Mediterranean sea urchin Paracentrotus lividus by Hertwig(1876),enormous progress and insights have been made on this topic.However,the precise ...Since the first demonstration of sperm entry into the fertilized eggs of Mediterranean sea urchin Paracentrotus lividus by Hertwig(1876),enormous progress and insights have been made on this topic.However,the precise molecular mechanisms underlying fertilization are largely unknown.The two most dramatic changes taking place in the zygote immediately after fertilization are:(i) a sharp increase of intracellular Ca2+ that initiates at the sperm interaction site and traverses the egg cytoplasm as a wave,and(ii) the concomitant dynamic rearrangement of the actin cytoskeleton.Traditionally,this has been studied most extensively in the sea urchin eggs,but another echinoderm,starfish,whose eggs are much bigger and transparent,has facilitated experimental approaches using microinjection and fluorescent imaging methodologies.Thus in starfish,it has been shown that the sperm-induced Ca2+ increase in the fertilized egg can be recapitulated by several Ca2+ -evoking second messengers,namely inositol 1,4,5-trisphosphate(InsP3) ,cyclic ADP-ribose(cADPr) and nicotinic acid adenine dinucleotide phosphate(NAADP) ,which may play distinct roles in the generation and propagation of the Ca2+ waves.Interestingly,it has also been found that the dynamic rearrangement of the actin cytoskeleton in the fertilized eggs plays pivotal roles in guiding monospermic sperm entry and in the fine modulation of the intracellular Ca2+ signaling.As it is well known that Ca2+ regulates the structure of the actin cytoskeleton,our finding that Ca2+ signaling can be reciprocally affected by the state of the actin cytoskeleton raises an intriguing possibility that actin and Ca2+ signaling may form a'positive feedback loop'that accelerates the downstream events of fertilization.Perturbation of the cortical actin networks also inhibits cortical granules exocytosis.Polymerizing actin bundles also compose the'acrosome process,'a tubular structure protruding from the head of fertilizing sperm. Hence,actin,which is one of the most strictly conserved proteins in eukaryotes,modulates almost all major aspects of fertilization.展开更多
基金National Natural Sciences Foundation of China (Grant No. 90713005,20910094)the Ministry of Education of China (Grant No. 200800010078)
文摘New cADPR mimic 5 that integrates the simplified nucleobase and ribose was designed and synthesized by using Cu(I)-catalyzed Huisgen [3+2] cycloaddition to build the simplified triazole nucleobase and microwave-assisted reaction to carry out intramolecular pyrophosphorylation. Primary biological investigation showed that the introduction of an ether strand to replace northern and southern riboses could retain calcium inducing activity, but the introduction of a carbon strand to replace the northern ribose could lead to decreased activity.
基金scientific research funding from the National Natural Science Foundation of China(Nos.21332010,21172010, 21002004)
文摘A facile and efficient protocol for the synthesis of sulfur substituted-cyclopyrophosphate of cIDPRE(P_S^1-cIDPRE) was developed.The key step was the cyclization process which was completed by the sulfur substituted cyclization precursor 1b via the one-pot phosphoramidite strategy.
文摘AIMS: β-adrenergic augmentation of Ca2+ sparks and cardiac contractility has been functionally linked to phosphorylation-dependent dissociation of FK506 binding protein 12.
文摘Human mesenchymal stem cells(MSCs)are a rare population of non-hematopoietic stem cells with multilineage potential,originally identified in the bone marrow.Due to the lack of a single specific marker,MSCs can be recognized and isolated by a series of features such as plastic adherence,a panel of surface markers,the clonogenic and the differentiation abilities.The recognized role of MSCs in the regulation of hemopoiesis,in cell-degeneration protection and in the homeostasis of mesodermal tissues through their differentiation properties,justifies the current interest in identifying the biochemical signals produced by MSCs and their active crosstalk in tissue environments.Only recently have extracellular nucleotides(eNTPs)and their metabolites been included among the molecular signals produced by MSCs.These molecules are active on both ionotropic and metabotropic receptors present in most cell types.MSCs possess a significant display of these receptors and of nucleotide processing ectoenzymes on their plasma membrane.Thus,from their niche,MSCs give a significant contribution to the complex signaling network of eNTPs and its derivatives.Recent studies have demonstrated the multifaceted aspects of eNTP metabolism and their signal transduction in MSCs and revealed important roles in specifying differentiation lineages and modulating MSC physiology and communication with other cells.This review discusses the roles of eNTPs,their receptors and ectoenzymes,and the relevance of the signaling network and MSC functions,and also focuses on the importance of this emerging area of interest for future MSC-based cell therapies.
基金National Natural Science Foundation of China (Grant No.20910094) Ministry of Education of China(Grant No.200800010078)
文摘An optimized approach for the synthesis of N^1-ethoxymethyl-substituted cyclic inosine diphosphoribose(cIDPRE),an analogue of cyclic adenosine diphosphoribose(cADPR),has been developed via microwave-assisted intramolecular cyclization. The target compound has been successfully obtained through N^1-substitution,phosphorylation,cyclization and deprotection.By using this method,8-amino and bromo-substituted cIDPRE analogues were successfully obtained in good yield.The new approach has greatly shortened the synthetic route and enhanced the overall efficiency.
基金supported by the Research Grants Council of Hong Kong(Grant Nos.769107,768408, 769309 and 770610)the National Natural Science Foundation of China/the Research Grants Council of Hong Kong(Grant No.N_HKU 722/08)
文摘The concept advanced by Berridge and colleagues that intracellular Ca2+-stores can be mobilized in an agonist-dependent and messenger(IP3)-mediated manner has put Ca 2+-mobilization at the center stage of signal transduction mechanisms.During the late 1980s,we showed that Ca2+-stores can be mobilized by two other messengers unrelated to inositol trisphosphate(IP 3) and identified them as cyclic ADP-ribose(cADPR),a novel cyclic nucleotide from NAD,and nicotinic acid adenine dinucleotide phosphate(NAADP),a linear metabolite of NADP.Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms.Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum,while that of NAADP is the two pore channel in endolysosomes. As cADPR and NAADP are structurally and functionally distinct,it is remarkable that they are synthesized by the same enzyme.They are thus fraternal twin messengers.We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and,through homology,found its mammalian homolog,CD38.Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion,susceptibility to bacterial infection,to social behavior of mice through modulating neuronal oxytocin secretion.We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis.This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.
文摘Since the first demonstration of sperm entry into the fertilized eggs of Mediterranean sea urchin Paracentrotus lividus by Hertwig(1876),enormous progress and insights have been made on this topic.However,the precise molecular mechanisms underlying fertilization are largely unknown.The two most dramatic changes taking place in the zygote immediately after fertilization are:(i) a sharp increase of intracellular Ca2+ that initiates at the sperm interaction site and traverses the egg cytoplasm as a wave,and(ii) the concomitant dynamic rearrangement of the actin cytoskeleton.Traditionally,this has been studied most extensively in the sea urchin eggs,but another echinoderm,starfish,whose eggs are much bigger and transparent,has facilitated experimental approaches using microinjection and fluorescent imaging methodologies.Thus in starfish,it has been shown that the sperm-induced Ca2+ increase in the fertilized egg can be recapitulated by several Ca2+ -evoking second messengers,namely inositol 1,4,5-trisphosphate(InsP3) ,cyclic ADP-ribose(cADPr) and nicotinic acid adenine dinucleotide phosphate(NAADP) ,which may play distinct roles in the generation and propagation of the Ca2+ waves.Interestingly,it has also been found that the dynamic rearrangement of the actin cytoskeleton in the fertilized eggs plays pivotal roles in guiding monospermic sperm entry and in the fine modulation of the intracellular Ca2+ signaling.As it is well known that Ca2+ regulates the structure of the actin cytoskeleton,our finding that Ca2+ signaling can be reciprocally affected by the state of the actin cytoskeleton raises an intriguing possibility that actin and Ca2+ signaling may form a'positive feedback loop'that accelerates the downstream events of fertilization.Perturbation of the cortical actin networks also inhibits cortical granules exocytosis.Polymerizing actin bundles also compose the'acrosome process,'a tubular structure protruding from the head of fertilizing sperm. Hence,actin,which is one of the most strictly conserved proteins in eukaryotes,modulates almost all major aspects of fertilization.