β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition...β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition on synthesis process were investigated, and the formation process of the composites was also discussed. The phase composition and microstructure of the composites were characterized by X-ray diffraction and scanning electronic microscopy. The results show that increasing heating temperature or mass ratio of carbon black to fly ash can promote the formation of β-Sialon. The β-Sialon based composites can be synthesized at 1723 K for 6 h while heating the sample with mass ratio of carbon black to fly ash of 0.56. The as-received β-Sialon in the composites exists as granular with an average particle size of 2-3 μm. The preparation process of β-Sialon based composites includes the formation of O′-Sialon, X-Sialon and β-Sialon as well as the conversion processes of O′-Sialon and X-Sialon to β-Sialon.展开更多
Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process...Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process of β-Sialon. The rate of oxidation process is controlled by chemicalreaction at the initial stage and then by diffusion. The apparent activation energies and appar-ent rate constants at different temperatures are determined by treating TG data of the overallprocess.展开更多
Well-sintered polycrystalline cubic boron nitride(PCBN)composites with different contents of cubic boron nitride(CBN) were obtained using Al and TiN as additives under pressure of 5.5 GPa and temperature of 1450 ℃.Th...Well-sintered polycrystalline cubic boron nitride(PCBN)composites with different contents of cubic boron nitride(CBN) were obtained using Al and TiN as additives under pressure of 5.5 GPa and temperature of 1450 ℃.The network structure of CBN grains and bonding materials was observed using scanning electron microscope(SEM).With the help of X-ray diffraction(XRD) analysis,TiB2 and AlN could be determined as main products and Al3 Ti also was detected in the Al-rich samples after sintering process.Furthermore,it was shown that Vickers hardness of composites was improved with the increase of CBN contents.However,the lifetime of PCBN composites was in negative correlation with the amount of CBN in turning GCr15 hardened steels,and the surface roughness of workpieces machined by these PCBN composites also showed the same trend.A series of cutting data confirmed that the low CBN content in PCBN composites could enhance the working durability and improve the surface quality in turning hardened steels.The present experiments also indicated that the lowest value of flank wear was not constant for different PCBN composites when they were used to machine several workpieces with different hardness.展开更多
CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optica...CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optical microscope,scanning electron microscope and X-ray diffraction equipment were utilized to study the effects of heating temperature on the microstructure of the joining interface.The compressive strength of the brazed composite grits was also measured.The experimental results show that the atoms of Ti,Al,B and N have preferentially penetrated towards the joining interface of composite grits and filler alloy.The compounds of Ti-nitride,Ti-borides and Ti3AlN were formed in the reaction layer.Degradation effect was not made on the compressive strength of the CBN-AlN composite grits when the brazing process was carried out in the temperature range of 890-920 ℃.展开更多
Composites were obtained in the in SiC-SiAlON and Al2O3-SiAlON system. Physical-chemical processes going on at the obtaining of SiALON within the range of 800°C - 1500°C were studied. Charge compositions and...Composites were obtained in the in SiC-SiAlON and Al2O3-SiAlON system. Physical-chemical processes going on at the obtaining of SiALON within the range of 800°C - 1500°C were studied. Charge compositions and sintering regime were selected. It was proved that X-SiALON was obtained at the sintering of kaolin-aluminum powder at 1500°C, while β-SiALON was formed at the sintering of SiC-Aluminum powder, silicium and Al2O3-aluminum powder, silicium at 1500°C. Corrosion properties of the materials were studied. Investigations were performed by the methods of X-Ray structural and microscopical analysis.展开更多
Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sint...Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B4C,BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.展开更多
β-sialon/nano-size SiC composite ceramic with DyAG(Dy3Al5O12) as grain boundary phase was fabricated through hot-pressing. The effect of nano-size SiC on densification, phase composition, microstructure and mechanica...β-sialon/nano-size SiC composite ceramic with DyAG(Dy3Al5O12) as grain boundary phase was fabricated through hot-pressing. The effect of nano-size SiC on densification, phase composition, microstructure and mechanical properties of the materials was studied展开更多
The sintering processes of Re-(α' + β')-sialon composites (Re=Sm, Dy, Yb) have been investigated by using a specially designed high temperature dilatometer. The initial densification of various samples start...The sintering processes of Re-(α' + β')-sialon composites (Re=Sm, Dy, Yb) have been investigated by using a specially designed high temperature dilatometer. The initial densification of various samples starts at about 1200℃, and the maximum shrinkage rate of these sialon composites occurs at about 1500℃. The light rare earth sialon has a noticeably tower densification temperature and a higher final shrinkage. The sirtering kinetics of Re-(α' +β')-sialonare much more complex. The Kingery's liquid phase sintering model appears to be applicable,but the mechanism of mass transport in stage two appears to be changeable. The controlling factor shiffs from solution-precipitation to diffusion when densification process proceeds from the earlier part to the later part of this stage.展开更多
The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite ...The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature展开更多
Sialon/SiC composites were synthesized in situ from SiC,α-Si_(3)N_(4),AlN,calcined bauxite,quartz and Y_(2)O_(3) via layered buried sintering at different temperatures (1 540-1 640 ℃).The results showed that the O’...Sialon/SiC composites were synthesized in situ from SiC,α-Si_(3)N_(4),AlN,calcined bauxite,quartz and Y_(2)O_(3) via layered buried sintering at different temperatures (1 540-1 640 ℃).The results showed that the O’-sialon/SiC sample with 60 wt% silicon carbide sintered at 1 600 ℃ exhibited excellent mechanical properties,with apparent porosity of 16.01%,bulk density of 2.06 g·cm^(-3),bending strength of 52.63 MPa,and thermal expansion coefficient of 5.83×10-6 ℃^(-1).The oxide film formed on the surface was linked closely to O’-sialon,so the oxide film was not easily broken.After 100 h oxidization,the sample surface was smoother and denser,with oxidation weight gain rate 23.6 mg/cm^(2) and oxidation rate constant 2.0 mg^(2)·cm^(-4)·h^(-1).Therefore,the sample had the excellent high-temperature oxidation resistance.It was confirmed that the in-situ sialon/SiC composites could be a promising candidate for solar absorber owing to its high-temperature oxidation resistance.展开更多
Goal: obtaining of composite in the SiC-SiAlON system with the metal thermal method in the nitrogen medium. Method: SiALON-s are solid metal oxide solutions in nitrides. Area of their presence is considered in four-co...Goal: obtaining of composite in the SiC-SiAlON system with the metal thermal method in the nitrogen medium. Method: SiALON-s are solid metal oxide solutions in nitrides. Area of their presence is considered in four-component system-Si3N4-ALN-AL2O3-SiO2. In the present paper SiALON-containing composite was obtained through alum-thermal process in the nitrogen medium on the base of Geopolymer (kaolin and pologycley-Ukraine), SiC, aluminum nano-powder and Si powder with small additives of perlite (Aragatz, Armenia) by the reactive baking method. The advantage of this method is that compounds, which are newly formed thanks to interaction going on at thermal treatment: Si3N4, Si, AlN are active, which contributes to SiALON formation at relatively low temperature, at 1250°C - 1300°C. Results-β-SiAlON was formed at the sintering of SiC-aluminium and silicium powder, geopolymer at 1450°C. Porosity of carbide SiAlON composite obtained by reactive sintering, according to water absorption, equals to 13% - 15%. The samples were fragmented in a jaw-crusher and were powdered in attrition mill till micro-powder dispersion was obtained. Then samples were hot-pressed at 1620°C under 30 MPa pressure. Hold-time at the final temperature was 8 min. Sample water absorption, according to porosity, was less than 0.4%. Further studies were continued on these samples. Conclusion: the paper offers processes of formation of SiC-SiAlON composites and their physical and technical properties. Phase composition of the composites was studied by X-ray diffraction method, while the structure was studied by the use of optic and electron microscope. Electric properties showed that the specimen A obtained by hot-compression is characterized by 2 signs lower resistance than the porous material B, which was used to receive this specimen. Probably this should be connected with transition of the reactively baked structure of the hot-compressed material into compact structure. Obtained materials are used in protecting jackets of thermo couples used for melted metal temperature measuring (18 - 20 measuring) and for constructions used for placing objects in factory furnaces.展开更多
Goal: Synthesis of SiAlON by reaction coating method using aluminosilicate natural raw material geopolymer (kaolin), corundum and silicon carbide and on its basis obtaining a composite with high physical and technical...Goal: Synthesis of SiAlON by reaction coating method using aluminosilicate natural raw material geopolymer (kaolin), corundum and silicon carbide and on its basis obtaining a composite with high physical and technical properties by hot pressing for use in armor and rocket technology. For the intensification of SiAlON formation and sintering processes, the influence of various additives was studied, such as: aluminum powder, elemental silicon, yttrium and magnesium oxides. Method: A SiAlON-containing composite with an open porosity of 15% - 16% was obtained by the metallothermic process and the method of reactive annealing in nitrogen. The resulting material was milled to a dispersion of 1 - 3 μm and hot pressed at 1620°C to obtain a product with high density and performance properties. We studied the process of SiAlON formation and the microstructure of the composite by X-ray phase, optical and electronmicroscopy analysis methods. Result: In the selected composition the β-SiAlON was formed at 1400°C instead of 1800°C, which was due to the mutual influence of the initial raw materials: geopolymer kaolin, perlite, corundum, aluminum, silicon, SiC, the development of the process is facilitated by the vitreous dopant perlite (96 glass phase). The use of perlite, which is eutectic with geopolymer at low temperatures, creates a good prerequisite for intensive diffusion processes with other components. Conclusion: A SiAlON-containing composite with high physical and technical properties was obtained in the SiC-SiAlON-Al<sub>2</sub>O<sub>3</sub> system by the method of reactive sintering and hot pressing, with the following properties: the strength limit in compression is 1940 MPa, and in bending it is 490 MPa. The process of making SiAlON has been studied using X-ray phase and electron microscopy analysis methods. The physical and technical properties of the obtained composite are studied by modern research methods.展开更多
Goal: The goal of the research is preparation of SiAlON-containing composite through nitro aluminothermic processes, by the methods of reactive sintering and hot compaction. Method: The composite CH-6 was obtained by ...Goal: The goal of the research is preparation of SiAlON-containing composite through nitro aluminothermic processes, by the methods of reactive sintering and hot compaction. Method: The composite CH-6 was obtained by the method of reactive sintering, with further grinding and hot compression in vacuum furnace at 16000°C, under 30 MPa pressure and 10-12 min standing at the final temperature. Precursor was prepared in a thermostat at 150°C temperature by double compression. Pressure equaled to 20-25 MPa. Results: Physical-technical properties of specimens prepared via hot compaction were investigated. Mechanical strength at compression is 1940 MPa;mechanical strength at bending is 490 MPa;elastic module is 199.5 GPa, HV-11.6 GPa. X-Ray diffraction analysis, electron microscopic and X-ray diffraction Microspectral analysis were used to investigate composite microstructure and phase composition. Composite formulation was defined, the main phases of which were: β-SiAlON, corundum and silicium carbide. Conclusion: Composite CH-6 has been selected from the obtained composites, which is characterized by relatively high physical-technical properties: strength, density and hardness. Materials can be used for making high refractory articles, such as jackets to secure thermocouples, furnace bedding, cutting tools for metal and wood treatment, in rocket spatial technology and others.展开更多
以Si3N4、Al N、Al2O3和c BN为原材料,采用放电等离子烧结,在氮气、氩气和真空三种不同烧结气氛下制备Si Al ON/c BN陶瓷复合材料.通过XRD、SEM及力学性能评估等手段研究了材料的物相组成、显微组织、体积密度、硬度以及断裂韧性等性能...以Si3N4、Al N、Al2O3和c BN为原材料,采用放电等离子烧结,在氮气、氩气和真空三种不同烧结气氛下制备Si Al ON/c BN陶瓷复合材料.通过XRD、SEM及力学性能评估等手段研究了材料的物相组成、显微组织、体积密度、硬度以及断裂韧性等性能.结果表明:真空气氛下制备的Si Al ON/c BN陶瓷复合材料显微组织相对致密,具有较高的体积密度、硬度和断裂韧性.展开更多
ZrN-SiAlON composite materials were synthesized at 1 550 ℃ for 6 h via a carbothermal reduction nitridation route using fly ash (≤74 μm),zircon (≤ 44 μm) and active carbon as starting materials.The processed ...ZrN-SiAlON composite materials were synthesized at 1 550 ℃ for 6 h via a carbothermal reduction nitridation route using fly ash (≤74 μm),zircon (≤ 44 μm) and active carbon as starting materials.The processed ZrN-SiAlON composite micropowders were mixed with polyvinyl alcohol as binder to prepare ZrN (ZrON)-SiAlON composite ceramics by carbon-embedded pressureless firing at 1 450,1 500 and 1 550 ℃ for 1 h,respectively.Influences of firing temperature on the phase compositions,microstructure and sintering properties of the ceramics were investigated.The results show that:(1) β-SiAlON based composite ceramics with different compositions can be prepared by controlling firing temperature,and the main crystalline phases of the specimen fired at 1 550 ℃ for 1 h involve ZrN,ZrON and β-SiAlON (z =2,Si4Al2O2N6); (2) ZrN (ZrON),β-SiAlON and a Fe-Si based compound can be observed in the microstructures of the specimens fired at different temperatures.ZrN (ZrON) particles distribute homogeneously in the β-SiAlON matrix; (3) raising firing temperature can increase the shrinkage ratio of the ceramics,and the volume shrinkage ratio increases from 19.4% to 40.3% when the firing temperature rises from 1 450 to 1 550 ℃.展开更多
In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toug...In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toughness measures 9-10 MPa·m<sup>1/2</sup>.The static fa-tigue behavior at 1370℃ of this material is also encouraging.Besides,two another α′/β′sialon composites doped with rare-earth oxides are also described.The effects of processingparameters on the microstructure and the properties of the materials are discussed in somedetails.展开更多
Goal: To obtain SIALON containing composites by reactive sintering method in SiC-B4</sub>C-Si-Al-Al2</sub>O3</sub> system. Using this method of synthesis, it became possible to obtain composites with...Goal: To obtain SIALON containing composites by reactive sintering method in SiC-B4</sub>C-Si-Al-Al2</sub>O3</sub> system. Using this method of synthesis, it became possible to obtain composites with different percentages of SIALON. Our task was also to study the phase composition in the SiC-B4</sub>C-Si-Al-Al2</sub>O3</sub> system. Method: The obtained mass was grounded in an attritor and the consolidated composite was obtained by hot pressing at 1800°C, 40 minutes, delaying at final temperature for 8 min. under 30 MPa pressure. To study the phase composition of the composites, we conducted an X-ray structural analysis on the DRON-3 device, and to study the microstructure, we conducted research on an optical microscope and a raster electron microscope “Nanolab 7” of the company “OPTON”. The values of the electrical parameters of the study composites were calculated on the basis of the obtained “lgp-t” dependence. Result: In SiC-B4</sub>C-Si-Al-Al2</sub>O3</sub> system we obtained composites with a matrix composed of: β-SIALON, silicon carbide, corundum and nanoparticles of boron nitride. Conclusion: The phase composition of the obtained composite provides high physical-technical and performance properties of these composites. Compression strength—2187 MPA, Bending strength—285 MPa, Thermal expansion coefficient a20-700</sub>-3.8 × 10-60</sup> C.展开更多
基金Project (51074038) supported by the National Natural Science Foundation of ChinaProject (N100302002) supported by the Fundamental Research Funds for the Central Universities, China
文摘β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition on synthesis process were investigated, and the formation process of the composites was also discussed. The phase composition and microstructure of the composites were characterized by X-ray diffraction and scanning electronic microscopy. The results show that increasing heating temperature or mass ratio of carbon black to fly ash can promote the formation of β-Sialon. The β-Sialon based composites can be synthesized at 1723 K for 6 h while heating the sample with mass ratio of carbon black to fly ash of 0.56. The as-received β-Sialon in the composites exists as granular with an average particle size of 2-3 μm. The preparation process of β-Sialon based composites includes the formation of O′-Sialon, X-Sialon and β-Sialon as well as the conversion processes of O′-Sialon and X-Sialon to β-Sialon.
文摘Non-isothermal kinetic research has been carried out on oxidation behavior of β-Sialon in diphaseβ-Sialon/Al_2O_3 composite at high temperatures. A kinetic formula is established for non-isothermal oxidation process of β-Sialon. The rate of oxidation process is controlled by chemicalreaction at the initial stage and then by diffusion. The apparent activation energies and appar-ent rate constants at different temperatures are determined by treating TG data of the overallprocess.
文摘Well-sintered polycrystalline cubic boron nitride(PCBN)composites with different contents of cubic boron nitride(CBN) were obtained using Al and TiN as additives under pressure of 5.5 GPa and temperature of 1450 ℃.The network structure of CBN grains and bonding materials was observed using scanning electron microscope(SEM).With the help of X-ray diffraction(XRD) analysis,TiB2 and AlN could be determined as main products and Al3 Ti also was detected in the Al-rich samples after sintering process.Furthermore,it was shown that Vickers hardness of composites was improved with the increase of CBN contents.However,the lifetime of PCBN composites was in negative correlation with the amount of CBN in turning GCr15 hardened steels,and the surface roughness of workpieces machined by these PCBN composites also showed the same trend.A series of cutting data confirmed that the low CBN content in PCBN composites could enhance the working durability and improve the surface quality in turning hardened steels.The present experiments also indicated that the lowest value of flank wear was not constant for different PCBN composites when they were used to machine several workpieces with different hardness.
基金Funded by the National Basic Research Program of China (No.2009CB724403)the National Natural Science Foundation of China (No.51005116)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0837)the NUAA Research Funding (No. 2010236)
文摘CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optical microscope,scanning electron microscope and X-ray diffraction equipment were utilized to study the effects of heating temperature on the microstructure of the joining interface.The compressive strength of the brazed composite grits was also measured.The experimental results show that the atoms of Ti,Al,B and N have preferentially penetrated towards the joining interface of composite grits and filler alloy.The compounds of Ti-nitride,Ti-borides and Ti3AlN were formed in the reaction layer.Degradation effect was not made on the compressive strength of the CBN-AlN composite grits when the brazing process was carried out in the temperature range of 890-920 ℃.
文摘Composites were obtained in the in SiC-SiAlON and Al2O3-SiAlON system. Physical-chemical processes going on at the obtaining of SiALON within the range of 800°C - 1500°C were studied. Charge compositions and sintering regime were selected. It was proved that X-SiALON was obtained at the sintering of kaolin-aluminum powder at 1500°C, while β-SiALON was formed at the sintering of SiC-Aluminum powder, silicium and Al2O3-aluminum powder, silicium at 1500°C. Corrosion properties of the materials were studied. Investigations were performed by the methods of X-Ray structural and microscopical analysis.
基金supported by the National Natural Science Foundation of China(Grant No.51301075)the Project of Development and Reform Commission of Jilin Province,China(Grant No.2014Y136)
文摘Improving the thermal stability of diamond and other superhard materials has great significance in various applications. Here, we report the synthesis and characterization of bulk diamond–cBN–B4C–Si composites sintered at high pressure and high temperature(HPHT, 5.2 GPa, 1620–1680 K for 3–5 min). The results show that the diamond, cBN, B4C,BxSiC, SiO2 and amorphous carbon or a little surplus Si are present in the sintered samples. The onset oxidation temperature of 1673 K in the as-synthesized sample is much higher than that of diamond, cBN, and B4C. The high thermal stability is ascribed to the covalent bonds of B–C, C–N, and the solid-solution of BxSiC formed during the sintering process. The results obtained in this work may be useful in preparing superhard materials with high thermal stability.
文摘β-sialon/nano-size SiC composite ceramic with DyAG(Dy3Al5O12) as grain boundary phase was fabricated through hot-pressing. The effect of nano-size SiC on densification, phase composition, microstructure and mechanical properties of the materials was studied
文摘The sintering processes of Re-(α' + β')-sialon composites (Re=Sm, Dy, Yb) have been investigated by using a specially designed high temperature dilatometer. The initial densification of various samples starts at about 1200℃, and the maximum shrinkage rate of these sialon composites occurs at about 1500℃. The light rare earth sialon has a noticeably tower densification temperature and a higher final shrinkage. The sirtering kinetics of Re-(α' +β')-sialonare much more complex. The Kingery's liquid phase sintering model appears to be applicable,but the mechanism of mass transport in stage two appears to be changeable. The controlling factor shiffs from solution-precipitation to diffusion when densification process proceeds from the earlier part to the later part of this stage.
文摘The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature
基金Funded by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2018YFB1501002)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(No.XHD2020-001)。
文摘Sialon/SiC composites were synthesized in situ from SiC,α-Si_(3)N_(4),AlN,calcined bauxite,quartz and Y_(2)O_(3) via layered buried sintering at different temperatures (1 540-1 640 ℃).The results showed that the O’-sialon/SiC sample with 60 wt% silicon carbide sintered at 1 600 ℃ exhibited excellent mechanical properties,with apparent porosity of 16.01%,bulk density of 2.06 g·cm^(-3),bending strength of 52.63 MPa,and thermal expansion coefficient of 5.83×10-6 ℃^(-1).The oxide film formed on the surface was linked closely to O’-sialon,so the oxide film was not easily broken.After 100 h oxidization,the sample surface was smoother and denser,with oxidation weight gain rate 23.6 mg/cm^(2) and oxidation rate constant 2.0 mg^(2)·cm^(-4)·h^(-1).Therefore,the sample had the excellent high-temperature oxidation resistance.It was confirmed that the in-situ sialon/SiC composites could be a promising candidate for solar absorber owing to its high-temperature oxidation resistance.
文摘Goal: obtaining of composite in the SiC-SiAlON system with the metal thermal method in the nitrogen medium. Method: SiALON-s are solid metal oxide solutions in nitrides. Area of their presence is considered in four-component system-Si3N4-ALN-AL2O3-SiO2. In the present paper SiALON-containing composite was obtained through alum-thermal process in the nitrogen medium on the base of Geopolymer (kaolin and pologycley-Ukraine), SiC, aluminum nano-powder and Si powder with small additives of perlite (Aragatz, Armenia) by the reactive baking method. The advantage of this method is that compounds, which are newly formed thanks to interaction going on at thermal treatment: Si3N4, Si, AlN are active, which contributes to SiALON formation at relatively low temperature, at 1250°C - 1300°C. Results-β-SiAlON was formed at the sintering of SiC-aluminium and silicium powder, geopolymer at 1450°C. Porosity of carbide SiAlON composite obtained by reactive sintering, according to water absorption, equals to 13% - 15%. The samples were fragmented in a jaw-crusher and were powdered in attrition mill till micro-powder dispersion was obtained. Then samples were hot-pressed at 1620°C under 30 MPa pressure. Hold-time at the final temperature was 8 min. Sample water absorption, according to porosity, was less than 0.4%. Further studies were continued on these samples. Conclusion: the paper offers processes of formation of SiC-SiAlON composites and their physical and technical properties. Phase composition of the composites was studied by X-ray diffraction method, while the structure was studied by the use of optic and electron microscope. Electric properties showed that the specimen A obtained by hot-compression is characterized by 2 signs lower resistance than the porous material B, which was used to receive this specimen. Probably this should be connected with transition of the reactively baked structure of the hot-compressed material into compact structure. Obtained materials are used in protecting jackets of thermo couples used for melted metal temperature measuring (18 - 20 measuring) and for constructions used for placing objects in factory furnaces.
文摘Goal: Synthesis of SiAlON by reaction coating method using aluminosilicate natural raw material geopolymer (kaolin), corundum and silicon carbide and on its basis obtaining a composite with high physical and technical properties by hot pressing for use in armor and rocket technology. For the intensification of SiAlON formation and sintering processes, the influence of various additives was studied, such as: aluminum powder, elemental silicon, yttrium and magnesium oxides. Method: A SiAlON-containing composite with an open porosity of 15% - 16% was obtained by the metallothermic process and the method of reactive annealing in nitrogen. The resulting material was milled to a dispersion of 1 - 3 μm and hot pressed at 1620°C to obtain a product with high density and performance properties. We studied the process of SiAlON formation and the microstructure of the composite by X-ray phase, optical and electronmicroscopy analysis methods. Result: In the selected composition the β-SiAlON was formed at 1400°C instead of 1800°C, which was due to the mutual influence of the initial raw materials: geopolymer kaolin, perlite, corundum, aluminum, silicon, SiC, the development of the process is facilitated by the vitreous dopant perlite (96 glass phase). The use of perlite, which is eutectic with geopolymer at low temperatures, creates a good prerequisite for intensive diffusion processes with other components. Conclusion: A SiAlON-containing composite with high physical and technical properties was obtained in the SiC-SiAlON-Al<sub>2</sub>O<sub>3</sub> system by the method of reactive sintering and hot pressing, with the following properties: the strength limit in compression is 1940 MPa, and in bending it is 490 MPa. The process of making SiAlON has been studied using X-ray phase and electron microscopy analysis methods. The physical and technical properties of the obtained composite are studied by modern research methods.
文摘Goal: The goal of the research is preparation of SiAlON-containing composite through nitro aluminothermic processes, by the methods of reactive sintering and hot compaction. Method: The composite CH-6 was obtained by the method of reactive sintering, with further grinding and hot compression in vacuum furnace at 16000°C, under 30 MPa pressure and 10-12 min standing at the final temperature. Precursor was prepared in a thermostat at 150°C temperature by double compression. Pressure equaled to 20-25 MPa. Results: Physical-technical properties of specimens prepared via hot compaction were investigated. Mechanical strength at compression is 1940 MPa;mechanical strength at bending is 490 MPa;elastic module is 199.5 GPa, HV-11.6 GPa. X-Ray diffraction analysis, electron microscopic and X-ray diffraction Microspectral analysis were used to investigate composite microstructure and phase composition. Composite formulation was defined, the main phases of which were: β-SiAlON, corundum and silicium carbide. Conclusion: Composite CH-6 has been selected from the obtained composites, which is characterized by relatively high physical-technical properties: strength, density and hardness. Materials can be used for making high refractory articles, such as jackets to secure thermocouples, furnace bedding, cutting tools for metal and wood treatment, in rocket spatial technology and others.
文摘以Si3N4、Al N、Al2O3和c BN为原材料,采用放电等离子烧结,在氮气、氩气和真空三种不同烧结气氛下制备Si Al ON/c BN陶瓷复合材料.通过XRD、SEM及力学性能评估等手段研究了材料的物相组成、显微组织、体积密度、硬度以及断裂韧性等性能.结果表明:真空气氛下制备的Si Al ON/c BN陶瓷复合材料显微组织相对致密,具有较高的体积密度、硬度和断裂韧性.
基金the financial supports from the National Natural Science Foundation of China ( 51274057 )Fundamental Research Funds for the Central Universities ( N120402006)Educational Commission of Liaoning Province of China ( L2012079)
文摘ZrN-SiAlON composite materials were synthesized at 1 550 ℃ for 6 h via a carbothermal reduction nitridation route using fly ash (≤74 μm),zircon (≤ 44 μm) and active carbon as starting materials.The processed ZrN-SiAlON composite micropowders were mixed with polyvinyl alcohol as binder to prepare ZrN (ZrON)-SiAlON composite ceramics by carbon-embedded pressureless firing at 1 450,1 500 and 1 550 ℃ for 1 h,respectively.Influences of firing temperature on the phase compositions,microstructure and sintering properties of the ceramics were investigated.The results show that:(1) β-SiAlON based composite ceramics with different compositions can be prepared by controlling firing temperature,and the main crystalline phases of the specimen fired at 1 550 ℃ for 1 h involve ZrN,ZrON and β-SiAlON (z =2,Si4Al2O2N6); (2) ZrN (ZrON),β-SiAlON and a Fe-Si based compound can be observed in the microstructures of the specimens fired at different temperatures.ZrN (ZrON) particles distribute homogeneously in the β-SiAlON matrix; (3) raising firing temperature can increase the shrinkage ratio of the ceramics,and the volume shrinkage ratio increases from 19.4% to 40.3% when the firing temperature rises from 1 450 to 1 550 ℃.
基金the High Technology Research and Development Programme of China.
文摘In the present paper,a silicon nitride-based composite processed with rare-earth oxidesadditives is presented.Its bend strength can be maintained at a value as high as 1000 MPafrom 1000 to 1370℃ and the fracture toughness measures 9-10 MPa·m<sup>1/2</sup>.The static fa-tigue behavior at 1370℃ of this material is also encouraging.Besides,two another α′/β′sialon composites doped with rare-earth oxides are also described.The effects of processingparameters on the microstructure and the properties of the materials are discussed in somedetails.
文摘Goal: To obtain SIALON containing composites by reactive sintering method in SiC-B4</sub>C-Si-Al-Al2</sub>O3</sub> system. Using this method of synthesis, it became possible to obtain composites with different percentages of SIALON. Our task was also to study the phase composition in the SiC-B4</sub>C-Si-Al-Al2</sub>O3</sub> system. Method: The obtained mass was grounded in an attritor and the consolidated composite was obtained by hot pressing at 1800°C, 40 minutes, delaying at final temperature for 8 min. under 30 MPa pressure. To study the phase composition of the composites, we conducted an X-ray structural analysis on the DRON-3 device, and to study the microstructure, we conducted research on an optical microscope and a raster electron microscope “Nanolab 7” of the company “OPTON”. The values of the electrical parameters of the study composites were calculated on the basis of the obtained “lgp-t” dependence. Result: In SiC-B4</sub>C-Si-Al-Al2</sub>O3</sub> system we obtained composites with a matrix composed of: β-SIALON, silicon carbide, corundum and nanoparticles of boron nitride. Conclusion: The phase composition of the obtained composite provides high physical-technical and performance properties of these composites. Compression strength—2187 MPA, Bending strength—285 MPa, Thermal expansion coefficient a20-700</sub>-3.8 × 10-60</sup> C.