The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ...The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.展开更多
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d...The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.展开更多
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat...Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.展开更多
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri...A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.展开更多
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak...Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.展开更多
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit...Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.展开更多
Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters ...Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.展开更多
The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs...The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs RFPA(Rock Failure Process Analysis)software to establish a calculation model of constant resistance and large deformation(CRLD)anchorages and analyzes the effects of different support methods and pre-stress levels on rockburst.We simulate the process of tunnel rockburst disasters and find that ordinary anchor support incurs rockburst on the right arch waist and arch top,forming a V-shaped explosion pit.CRLD anchor support has several advantages in rockburst control,such as more uniform stress distribution in the surrounding rock,a uniform distribution of plastic zones,less noticeable damage to the tunnel,and effective control of the arch top displacement.The effectiveness of the CRLD anchor support under varying pre-stress conditions shows that a higher prestress results in a smaller plastic zone of the surrounding rock and arch top displacement and a lower number of acoustic emission signals,which better explains the excavation compensation effect.Moreover,adding long anchorages in the deep surrounding rock area can better control rockburst and reduce surrounding rock deformation.Based on these findings,we propose a comprehensive control system that combines long and short anchorages and provides the optimal scheme based on calculations.Therefore,by using high-prestress CRLD anchor support and the combination of long and short anchorages at critical positions,we can enhance the integrity of the surrounding rock,effectively absorb the energy released by the surrounding rock deformation,and reduce the incidence of rockburst disasters.展开更多
In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult....In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。展开更多
The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse ...The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.展开更多
As a combined supporting structure,the anchor cable and lattice beam have a complex interaction with the slope body.In order to investigate the seismic behaviors of the slope reinforced by anchor cable and lattice bea...As a combined supporting structure,the anchor cable and lattice beam have a complex interaction with the slope body.In order to investigate the seismic behaviors of the slope reinforced by anchor cable and lattice beam,a largescale shaking table test was carried out on a slope model(geometric scale of 1:20)by applying recorded and artificial seismic waves with different amplitudes.The acceleration and displacement of the slope,the displacement of lattice beam and the axial force of anchor cable were obtained to study the interaction between the slope and the supporting structure.The test results show that:(1)the acceleration responses of the slope at different relative elevations display obvious nonlinear characteristics with increasing of the peak ground acceleration(PGA)of the inputted seismic waves,and the weak intercalated layer has a stronger effect on acceleration amplification at the upper part of the slope than that at the lower part of the slope;(2)the frequency component near the second dominant frequency is significantly magnified by the interaction between the slope and the supporting structure;(3)the anchor cables at the upper part of the slope have larger peak and residual axial forces than that at the lower part of the slope,and the prestress loss of the anchor cable first occurs at the top of the slope and then passes down;(4)the peak and residual displacements inside the slope and on the lattice beam increase with the increase of relative elevation.When the inputted PGA is not greater than 0.5 g,the combined effect of anchor cable and lattice beam is remarkable for stabilizing the middle and lower parts of the potential sliding body.The research results can provide a reference for the seismic design of such slope and the optimization of supporting structure.展开更多
Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poi...Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poisson’s ratio anchor cable(NPR anchor cable)with high elongation and constant resistance was developed and successfully applied in the field of mine disaster control.However,theoretical and experimental research on the negative Poisson’s ratio effect and peripheral strain characteristics of NPR anchor cables is currently incomplete.This study used several theories and methods,such as static tensile,peripheral strain measurement,and static negative Poisson’s ratio measurement,to investigate the radial deformation law of an NPR anchor cable and the negative Poisson’s ratio characteristics.Experimental results elucidated constant resistance changes in an NPR anchor cable during operation,the motion of the constant resistance body in the constant resistance sleeve,and the deformation law of the constant resistance sleeve.Negative Poisson’s ratio characteristics of the NPR anchor cable and its superior energy absorption characteristics were verified and it provided a theoretical and experimental basis for energy absorption mechanisms of an NPR anchor cable.展开更多
The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed ...The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.展开更多
A new method for determining the incremental cohesion △Cm of surrounding rock due to prestressed cable anchor is presented, and the formulas for △Cm are deduced and △Cm distributions also are discussed, based on th...A new method for determining the incremental cohesion △Cm of surrounding rock due to prestressed cable anchor is presented, and the formulas for △Cm are deduced and △Cm distributions also are discussed, based on the two anchorage effects, one is the effect with the prestressed vaIue △σ3 of cable anchor improving the stress state of surrounding rock and increasing the surrounding rock strength, the other is the fully encapsulated effect. The determined incremental cohesion △Cm is subiected to the model test and field measurement in the references, and coincides well with those tested results. The formulas for △Cm can be used in designing supoport parameters and related numerical analyses of prestressed cable anchor.展开更多
The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting...The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting results are briefly summarized.展开更多
To obtain the deep displacement of the coal seam in the working face,multi-point displacements were installed in the coal seam, but the installation of multi-point displacement is differen tunder different geological ...To obtain the deep displacement of the coal seam in the working face,multi-point displacements were installed in the coal seam, but the installation of multi-point displacement is differen tunder different geological conditions. This paper is based on the splitting and merging of 7_1 coal and 7_2 coal in Huaibei Mining(Group) Co., Ltd., and analyzes properties of the roof andcoal in the 7_2 coal of the lower coal seam of bifurcation area, and calculates the damage depth of the floor in the process of 7_1 coal mining. The multi-point displacement meter installation is often challenged by hole collapse, stuck pole and broken installation rod in 7_2 coal of the soft coal seam of bifurcation area, as a result, the base points can't be installed in the specified location. In view of this, this paper adopts a new anchor cable mounting rod which can install the whole base points to the specified location without stuck pole or broken mounting stem. All the basic displacement data can be obtained, and the law of mine pressure appearance in stope and tunnel can be accurately controlled, which can be used to maintain the stability of roadway and the safety of stope.展开更多
The 110 mining method is an innovative and useful coal mining technology.It mainly relies on two technologies to improve coal mining rate:Top cutting and pressure relief,Negative Poisson’s ratio anchor cable(NPR anch...The 110 mining method is an innovative and useful coal mining technology.It mainly relies on two technologies to improve coal mining rate:Top cutting and pressure relief,Negative Poisson’s ratio anchor cable(NPR anchor cable)support.This study develops a large-scale physical model test using the speckle monitoring system(DIC),the stress-strain monitoring system,and the infrared thermal imaging system to deeply investigate the roadway deformation and failure law of the 110 mining method,the displacement movement mechanism of the overlying rock mass,and the change law of rock pressure.Results showed that pillarless coal mining utilizing mine pressure and rock fragmentation and expansion characteristics,the use of cut top pressure relief and NPR anchor stress compensation technology in the kilometer level of deep underground coal mining still has a positive effect along the tunnel space.In addition,they can reduce surface subsidence,provide a scientific basis for ecological protection,and develop other kilometer-level deep soft rock high-ground stress underground projects.展开更多
The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cut...The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cutting roof+NPR anchor cable"(PSCR-NPR),is subjected to scrutiny through theoretical analysis,numerical modelling,and field trials.Furthermore,a comprehensive analysis is undertaken to evaluate the stability control mechanism of this particular technology.The study provides evidence that the utilization of deep-hole directional energy-concentrated blasting facilitates the attainment of directional roof cutting in roadways.The aforementioned procedure leads to the formation of a uniform structural surface on the roof of the roadway and causes modifications in the surrounding geological formation.The examination of the lateral abutment pressure and shear stress distribution,both prior to and subsequent to roof cutting,indicates that the implementation of pre-splitting techniques leads to a noteworthy reduction in pressure.The proposition of incorporating the safety factor Q for roof cutting height is suggested as a method to augment comprehension of the pressure relief phenomenon in the field of engineering.The analysis of numerical simulation has indicated that the optimal pressure relief effect of a mining roadway in a fault area is attained when the value of Q is 1.8.The NPR anchor cable exhibits noteworthy characteristics,including a high level of prestress,continuous resistance,and substantial deformation.After the excavation of the roadway,a notable reduction in radial stress occurs,leading to the reinstatement of the three-phase stress state in the surrounding rock.This restoration is attributed to the substantial prestress exerted on the radial stress.The termination point of the NPR anchor cable is strategically positioned within a stable rock formation,allowing for the utilization of the mechanical characteristics of the deep stable rock mass.This positioning serves to improve the load-bearing capacity of the surrounding rock.The mining roadway within the fault region of Daqiang Coal Mine is outfitted with the PSCR-NPR technology.The drop in shear stress experienced by the rock surrounding the roadway is estimated to be around 30%,whilst the low-stress region of the mining roadway extends by a factor of approximately 5.5.The magnitude of surface displacement convergence experiences a decrease of approximately 45%-50%.The study’s findings provide useful insights regarding the stable of mining roadway in characterized by fault zones.展开更多
Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the ...Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the top cutting and pressure relief technology.This study utilizes the Digital Speckle Monitoring(DIC monitoring),stress-strain monitoring,and infrared thermal imaging systems to conduct physical model experiment of similar materials from the displacement,stress-strain,and temperature fields to investigate in depth the fracture change law of the overlying rock.In addition,it uses FLAC3D numerical simulation to invert the surface displacement settlement.The results show that the non-pillar overhead mining under the 110 mining method has little influence on the rock crack in the middle of the coal seam,and the crack development area is mainly concentrated in the overlying rock mass of the upward coal seam.The compensatory mechanical behavior of NPR anchor cable and the dilatation characteristics of rock mass have a good effect of retaining roadway along goaf,and can also reduce surface settlement.The 110 mining method provides a scientific basis for ecological environment protection and the development of other kilometer deep soft rock high ground stress underground projects.展开更多
Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant...Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant challenge to the stability control of superlarge-span tunnels.Based on the geological conditions of a super-large-span tunnel(span=32.17 m)at the bifurcation section of the Shenzhen interchange,this study determined support parameters via theoretical calculation,numerical simulation,and engineering analogy.The support effects of negative Poisson’s ratio(NPR)anchor cables and ordinary anchor cables on super-long-span tunnels were simulated and studied.Further,based on FLAC3D simulations,the surrounding rock stress field of NPR anchor cables was analyzed under different prestressing conditions,and the mechanism of a long-short combination,high-prestress compensation NPR anchor cable support was revealed.On the basis of numerical simulations,to our knowledge,the three-dimensional(3D)geomechanical model test of the NPR anchor cable and ordinary anchor cable support for super-large-span tunnel excavation is conducted for the first time,revealing the stress evolution law of super-large-span tunnels,deformation and failure characteristics of the surrounding rock,and the changing trend of the anchor cable’s axial force,and verifies that NPR anchor cables with high preloads are suitable for super-large-span tunnel support and have advantages over ordinary anchor cables.This study can provide a reliable theoretical reference for the support design and stability control of the surrounding rock of similar shallow-buried super-large-span tunnels.展开更多
基金funded by the National Natural Science Foundation of China (52174096, 52304110)the Fundamental Research Funds for the Central Universities (2022YJSSB03)the Scientific and Technological Projects of Henan Province (232102320238)。
文摘The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.
基金financial support from the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0708)the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ40078)the Scientific Research Project of Hunan Provincial Education Department(No.22C0573)+2 种基金the National Natural Science Foundation of China(51478477,51878668)Guizhou Provincial Department of Transportation Foundation(2017-122058)Foundation of Guizhou Provincial Science and Technology Department([2018]2815).
文摘Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.
基金Project(41941018)supported by the National Natural Science Foundation of China for the Special Project FundingProject(22-JKCF-08)supported by the Study on in-situ Stress Database and 3D in-situ Stress Inversion Technology of Highway Tunnel in Shanxi Province,China+1 种基金Project(2022-JKKJ-6)supported by the Study on Disaster Mechanism and NPR Anchor Cable Prevention and Control of Coal Mining Caving Subsidence in Operating Tunnel in Mountainous Area,ChinaProject(BBJ2024032)supported by the Fundamental Research Funds for the Central Universities(PhD Top Innovative Talents Fund of CUMTB),China。
文摘A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.
基金National Natural Science Foundation of China under Grant Nos.52208345,52008124,52268054the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection under Grant No.SKLGP2022K002+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No.BK20210479the Fundamental Research Funds for the Central Universities under Grant No.JUSRP121055。
文摘Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.
基金supported by the National Natural Science Foundation of China through Grant No.51978523.
文摘Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.
基金National Natural Science Foundation of China,Grant/Award Number:41941018State Key Laboratory for GeoMechanics and Deep Underground Engineering,Grant/Award Number:SKLGDUEK202201。
文摘Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.
基金funded by the National Natural Science Foundation of China(52174096,42277174)the Fundamental Research Funds for the Central Universities(2022YJSSB03)the Scientific and Technological Projects of Henan Province(232102320238)。
文摘The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs RFPA(Rock Failure Process Analysis)software to establish a calculation model of constant resistance and large deformation(CRLD)anchorages and analyzes the effects of different support methods and pre-stress levels on rockburst.We simulate the process of tunnel rockburst disasters and find that ordinary anchor support incurs rockburst on the right arch waist and arch top,forming a V-shaped explosion pit.CRLD anchor support has several advantages in rockburst control,such as more uniform stress distribution in the surrounding rock,a uniform distribution of plastic zones,less noticeable damage to the tunnel,and effective control of the arch top displacement.The effectiveness of the CRLD anchor support under varying pre-stress conditions shows that a higher prestress results in a smaller plastic zone of the surrounding rock and arch top displacement and a lower number of acoustic emission signals,which better explains the excavation compensation effect.Moreover,adding long anchorages in the deep surrounding rock area can better control rockburst and reduce surrounding rock deformation.Based on these findings,we propose a comprehensive control system that combines long and short anchorages and provides the optimal scheme based on calculations.Therefore,by using high-prestress CRLD anchor support and the combination of long and short anchorages at critical positions,we can enhance the integrity of the surrounding rock,effectively absorb the energy released by the surrounding rock deformation,and reduce the incidence of rockburst disasters.
基金supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)the Foundation for the Opening of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2129)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020007)。
文摘In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。
基金Funded by the Science and Technolog Program of Ministry of Transport of P.R.China(No.2012318352100)
文摘The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.
基金National Key R&D Program of China(Grant No.2017YFC0504901)the Science and Technology Plan Projects of Sichuan Province(Grant No 2015SZ0068)
文摘As a combined supporting structure,the anchor cable and lattice beam have a complex interaction with the slope body.In order to investigate the seismic behaviors of the slope reinforced by anchor cable and lattice beam,a largescale shaking table test was carried out on a slope model(geometric scale of 1:20)by applying recorded and artificial seismic waves with different amplitudes.The acceleration and displacement of the slope,the displacement of lattice beam and the axial force of anchor cable were obtained to study the interaction between the slope and the supporting structure.The test results show that:(1)the acceleration responses of the slope at different relative elevations display obvious nonlinear characteristics with increasing of the peak ground acceleration(PGA)of the inputted seismic waves,and the weak intercalated layer has a stronger effect on acceleration amplification at the upper part of the slope than that at the lower part of the slope;(2)the frequency component near the second dominant frequency is significantly magnified by the interaction between the slope and the supporting structure;(3)the anchor cables at the upper part of the slope have larger peak and residual axial forces than that at the lower part of the slope,and the prestress loss of the anchor cable first occurs at the top of the slope and then passes down;(4)the peak and residual displacements inside the slope and on the lattice beam increase with the increase of relative elevation.When the inputted PGA is not greater than 0.5 g,the combined effect of anchor cable and lattice beam is remarkable for stabilizing the middle and lower parts of the potential sliding body.The research results can provide a reference for the seismic design of such slope and the optimization of supporting structure.
基金supported by the National Natural Science Foundation of China(NSFC)(41941018)the Second Tibetan Plateau Scientific Expedition and Research Grant 2019QZKK0708。
文摘Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poisson’s ratio anchor cable(NPR anchor cable)with high elongation and constant resistance was developed and successfully applied in the field of mine disaster control.However,theoretical and experimental research on the negative Poisson’s ratio effect and peripheral strain characteristics of NPR anchor cables is currently incomplete.This study used several theories and methods,such as static tensile,peripheral strain measurement,and static negative Poisson’s ratio measurement,to investigate the radial deformation law of an NPR anchor cable and the negative Poisson’s ratio characteristics.Experimental results elucidated constant resistance changes in an NPR anchor cable during operation,the motion of the constant resistance body in the constant resistance sleeve,and the deformation law of the constant resistance sleeve.Negative Poisson’s ratio characteristics of the NPR anchor cable and its superior energy absorption characteristics were verified and it provided a theoretical and experimental basis for energy absorption mechanisms of an NPR anchor cable.
基金Supported by the National Natural Science Foundation ofChina (60537050)
文摘The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.
文摘A new method for determining the incremental cohesion △Cm of surrounding rock due to prestressed cable anchor is presented, and the formulas for △Cm are deduced and △Cm distributions also are discussed, based on the two anchorage effects, one is the effect with the prestressed vaIue △σ3 of cable anchor improving the stress state of surrounding rock and increasing the surrounding rock strength, the other is the fully encapsulated effect. The determined incremental cohesion △Cm is subiected to the model test and field measurement in the references, and coincides well with those tested results. The formulas for △Cm can be used in designing supoport parameters and related numerical analyses of prestressed cable anchor.
文摘The designing method and the supporting mechanism of both bolt and small cable anchor for full seam roadway in the weaker thick coal seam are systematically analyzed, and the construction technology and the supporting results are briefly summarized.
基金Sponsored by National Natural Science Fund of China(51474005)
文摘To obtain the deep displacement of the coal seam in the working face,multi-point displacements were installed in the coal seam, but the installation of multi-point displacement is differen tunder different geological conditions. This paper is based on the splitting and merging of 7_1 coal and 7_2 coal in Huaibei Mining(Group) Co., Ltd., and analyzes properties of the roof andcoal in the 7_2 coal of the lower coal seam of bifurcation area, and calculates the damage depth of the floor in the process of 7_1 coal mining. The multi-point displacement meter installation is often challenged by hole collapse, stuck pole and broken installation rod in 7_2 coal of the soft coal seam of bifurcation area, as a result, the base points can't be installed in the specified location. In view of this, this paper adopts a new anchor cable mounting rod which can install the whole base points to the specified location without stuck pole or broken mounting stem. All the basic displacement data can be obtained, and the law of mine pressure appearance in stope and tunnel can be accurately controlled, which can be used to maintain the stability of roadway and the safety of stope.
基金National Natural Science Foundation of China(No.42272204)The Fundamental Research Funds for the Central Universities(No.2021JCCXDC02)+2 种基金Gansu Province Science and Technology Major Special Project(19ZD2GA005)The State Key Laboratory for Geomechanics and Deep Underground Engineering(SKLGDUEK2020)Huaneng Group Headquarters Science and Technology Project(HNKJ21-H07)。
文摘The 110 mining method is an innovative and useful coal mining technology.It mainly relies on two technologies to improve coal mining rate:Top cutting and pressure relief,Negative Poisson’s ratio anchor cable(NPR anchor cable)support.This study develops a large-scale physical model test using the speckle monitoring system(DIC),the stress-strain monitoring system,and the infrared thermal imaging system to deeply investigate the roadway deformation and failure law of the 110 mining method,the displacement movement mechanism of the overlying rock mass,and the change law of rock pressure.Results showed that pillarless coal mining utilizing mine pressure and rock fragmentation and expansion characteristics,the use of cut top pressure relief and NPR anchor stress compensation technology in the kilometer level of deep underground coal mining still has a positive effect along the tunnel space.In addition,they can reduce surface subsidence,provide a scientific basis for ecological protection,and develop other kilometer-level deep soft rock high-ground stress underground projects.
基金funded by the National Natural Science Foundation of China(52174096,42277174)the Fundamental Research Funds for the Central Universities(2022YJSSB03)the Scientific and Technological Projects of Henan Province(232102320238)。
文摘The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cutting roof+NPR anchor cable"(PSCR-NPR),is subjected to scrutiny through theoretical analysis,numerical modelling,and field trials.Furthermore,a comprehensive analysis is undertaken to evaluate the stability control mechanism of this particular technology.The study provides evidence that the utilization of deep-hole directional energy-concentrated blasting facilitates the attainment of directional roof cutting in roadways.The aforementioned procedure leads to the formation of a uniform structural surface on the roof of the roadway and causes modifications in the surrounding geological formation.The examination of the lateral abutment pressure and shear stress distribution,both prior to and subsequent to roof cutting,indicates that the implementation of pre-splitting techniques leads to a noteworthy reduction in pressure.The proposition of incorporating the safety factor Q for roof cutting height is suggested as a method to augment comprehension of the pressure relief phenomenon in the field of engineering.The analysis of numerical simulation has indicated that the optimal pressure relief effect of a mining roadway in a fault area is attained when the value of Q is 1.8.The NPR anchor cable exhibits noteworthy characteristics,including a high level of prestress,continuous resistance,and substantial deformation.After the excavation of the roadway,a notable reduction in radial stress occurs,leading to the reinstatement of the three-phase stress state in the surrounding rock.This restoration is attributed to the substantial prestress exerted on the radial stress.The termination point of the NPR anchor cable is strategically positioned within a stable rock formation,allowing for the utilization of the mechanical characteristics of the deep stable rock mass.This positioning serves to improve the load-bearing capacity of the surrounding rock.The mining roadway within the fault region of Daqiang Coal Mine is outfitted with the PSCR-NPR technology.The drop in shear stress experienced by the rock surrounding the roadway is estimated to be around 30%,whilst the low-stress region of the mining roadway extends by a factor of approximately 5.5.The magnitude of surface displacement convergence experiences a decrease of approximately 45%-50%.The study’s findings provide useful insights regarding the stable of mining roadway in characterized by fault zones.
基金the National Natural Science Foundation of China(No.42272204)the Fundamental Research Funds for the Central Universities(Grant No.2021JCCXDC02)+3 种基金the Gansu Province Science and Technology Major Project(19ZD2GA005)for their supportfinancially supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering(SKLGDUEK2020)Huaneng Group headquarters science and technology project(HNKJ21-H07)the Coal Burst Research Center of Jiangsu,China。
文摘Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the top cutting and pressure relief technology.This study utilizes the Digital Speckle Monitoring(DIC monitoring),stress-strain monitoring,and infrared thermal imaging systems to conduct physical model experiment of similar materials from the displacement,stress-strain,and temperature fields to investigate in depth the fracture change law of the overlying rock.In addition,it uses FLAC3D numerical simulation to invert the surface displacement settlement.The results show that the non-pillar overhead mining under the 110 mining method has little influence on the rock crack in the middle of the coal seam,and the crack development area is mainly concentrated in the overlying rock mass of the upward coal seam.The compensatory mechanical behavior of NPR anchor cable and the dilatation characteristics of rock mass have a good effect of retaining roadway along goaf,and can also reduce surface settlement.The 110 mining method provides a scientific basis for ecological environment protection and the development of other kilometer deep soft rock high ground stress underground projects.
基金supported by the Foundation for the Opening of State Key Laboratory for GeoMechanics&Deep Underground Engineering(Grant No.SKLGDUEK2129).
文摘Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant challenge to the stability control of superlarge-span tunnels.Based on the geological conditions of a super-large-span tunnel(span=32.17 m)at the bifurcation section of the Shenzhen interchange,this study determined support parameters via theoretical calculation,numerical simulation,and engineering analogy.The support effects of negative Poisson’s ratio(NPR)anchor cables and ordinary anchor cables on super-long-span tunnels were simulated and studied.Further,based on FLAC3D simulations,the surrounding rock stress field of NPR anchor cables was analyzed under different prestressing conditions,and the mechanism of a long-short combination,high-prestress compensation NPR anchor cable support was revealed.On the basis of numerical simulations,to our knowledge,the three-dimensional(3D)geomechanical model test of the NPR anchor cable and ordinary anchor cable support for super-large-span tunnel excavation is conducted for the first time,revealing the stress evolution law of super-large-span tunnels,deformation and failure characteristics of the surrounding rock,and the changing trend of the anchor cable’s axial force,and verifies that NPR anchor cables with high preloads are suitable for super-large-span tunnel support and have advantages over ordinary anchor cables.This study can provide a reliable theoretical reference for the support design and stability control of the surrounding rock of similar shallow-buried super-large-span tunnels.