期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Geometrically Exact Formulation for Three-Dimensional Numerical Simulation of the Umbilical Cable in A Deep-Sea ROV System 被引量:3
1
作者 全伟才 张竺英 +2 位作者 张艾群 张奇峰 田宇 《China Ocean Engineering》 SCIE EI CSCD 2015年第2期223-240,共18页
This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle(ROV) system. The presented formulation takes acc... This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle(ROV) system. The presented formulation takes account of the geometric nonlinearities of large displacement, effects of axial load and bending stiffness for modeling of slack cables. The resulting nonlinear second-order governing equations are discretized spatially by the finite element method and solved temporally by the generalized-a implicit time integration algorithm, which is adapted to the case of varying coefficient matrices. The ability to consider three-dimensional union action of ocean current and ship heave motion upon the umbilical cable is the key feature of this analysis. The presented formulation is firstly validated, and then three numerical examples for the umbilical cable in a deep-sea ROV system are demonstrated and discussed, including the steady configurations only under the action of depth-dependent ocean current, the dynamic responses in the case of the only ship heave motion, and in the case of the combined action of the ship heave motion and ocean current. 展开更多
关键词 umbilical cable cable dynamics deep-sea ROV dynamic modeling
下载PDF
Dynamics analysis of planar armored cable motion in deep-sea ROV system 被引量:2
2
作者 全伟才 张竺英 张艾群 《Journal of Central South University》 SCIE EI CAS 2014年第12期4456-4467,共12页
The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite el... The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above. 展开更多
关键词 armored cable cable dynamics deep-sea remotely operated vehicle(ROV) resonance-zone geometrically exact model Newmark method
下载PDF
Numerical Modeling of a Spherical Buoy Moored by a Cable in Three Dimensions 被引量:3
3
作者 ZHU Xiangqian YOO Wan-Suk 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期588-597,共10页
Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the ... Floating facilities have been studied based on the static analysis of mooring cables over the past decades. To analyze the floating system of a spherical buoy moored by a cable with a higher accuracy than before, the dynamics of the cables are considered in the construction of the numerical modeling. The cable modeling is established based on a new element frame through which the hydrodynamic loads are expressed efficiently. The accuracy of the cable modeling is verified with an experiment that is conducted by a catenary chain moving in a water tank. In addition, the modeling of a spherical buoy is established with respect to a spherical coordinate in three dimensions, which can suffers the gravity, the variable buoyancy and Froude-Krylov loads. Finally, the numerical modeling for the system of a spherical buoy moored by a cable is established, and a virtual simulation is proceeded with the X- and Y-directional linear waves and the X-directional current. The comparison with the commercial simulation code Proteus DS indicates that the system is accurately analyzed by the numerical modeling. The tensions within the cable, the motions of the system, and the relationship between the motions and waves are illustrated according to the defined sea state. The dynamics of the cables should be considered in analyzing the floating system of a spherical buoy moored by a cable. 展开更多
关键词 numerical modeling dynamic simulation spherical buoy mooring cable dynamics of cable
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部