In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point...In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point and multiple inactive two-node SCEs is put forward. Based on the updated Lagrangian formulation, the geometric nonlinear stiffness matrix of the three-node straight sliding cable dement is deduced. The examples about two-span and three-span continuous cable structures are studied to verify the effectiveness of the derived SCE. Comparing the cable tension of SCE with the existing research results, the calculating results show that the error is less than 1%. The sliding characteristics should be considered in practical engineering because of the obvious difference between the cable tension of the SCE and that of the cable element without considering sliding characteristics.展开更多
In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding ca...In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.展开更多
In order to figure out the cable flexural rigidity influence on suspension bridges,a contrast model experiment is made:a chain cable model with no flexural rigidity and a wire cable model with some flexural rigidity.A...In order to figure out the cable flexural rigidity influence on suspension bridges,a contrast model experiment is made:a chain cable model with no flexural rigidity and a wire cable model with some flexural rigidity.And then,four finite element models of a same long-span suspension bridge with different cable element are set up to be analyzed.Both experimental and numerical simulation results show that,with the increase of the span and the decrease of sag-span ratio,the influence of the cable flexural rigidity is significant.The difference of nodes displacement reaches more than 10 cm in construction analysis,which will bring some trouble to the construction.And the difference of the maximum section edge normal stress may reach 15%,which may have an adverse impact onto the bridge.Therefore,considering the cable flexural rigidity is necessary on some analysis of suspension bridges.展开更多
In FLAC ^(3D),cable element or modified pile element can be used to build slope anchoring model.However,the difference between the two structural elements and their influence on the calculation results have not been s...In FLAC ^(3D),cable element or modified pile element can be used to build slope anchoring model.However,the difference between the two structural elements and their influence on the calculation results have not been studied in depth.In order to solve this problem,the Xiashu loess slope anchoring models based on cable element and modified pile element were constructed respectively.A variety of anchoring schemes were designed by orthogonal experiment method,and then they were brought into the model for calculation and the calculation results were analyzed by range analysis and variance analysis.The results show that the modified pile element can bear the bending moment and reflect the strain softening property of the grout.From the perspective of slope safety factor,the anchorage length and anchor bolt spacing are the main factors affecting the stability of the slope,and the anchorage angle is the secondary factor.The grout in cable element is assumed to be an elastic-perfectly plastic material,so the safety factor of the slope can be significantly increased by increasing the length of the anchor bolts.This will bring potential risks to the slope treatment project.Therefore,in the calculation of the slope anchoring model,the modified pile element is more suitable for simulating the anchor bolt.展开更多
基金The National Natural Science Foundation of China (No.51308193)China Postdoctoral Science Foundation (No.20110491342)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No.1101018C)the Science and Technology Project of State Grid Corporation of China(No.SGKJ[2007]116)
文摘In order to study the sliding characteristics when the cable structures are connected with other rods, a string of sliding cable dements (SCE) consisting of one active threenode SCE passing through the sliding point and multiple inactive two-node SCEs is put forward. Based on the updated Lagrangian formulation, the geometric nonlinear stiffness matrix of the three-node straight sliding cable dement is deduced. The examples about two-span and three-span continuous cable structures are studied to verify the effectiveness of the derived SCE. Comparing the cable tension of SCE with the existing research results, the calculating results show that the error is less than 1%. The sliding characteristics should be considered in practical engineering because of the obvious difference between the cable tension of the SCE and that of the cable element without considering sliding characteristics.
基金Project(51308193)supported by the National Natural Science Foundation of ChinaProject(SGKJ[2007]116)supported by the Science and Technology Program of State Grid Corporation of China
文摘In order to study the sliding characteristics when the cable is connected with the other rods in the transmission line structures,a linear sliding cable element based on updated Lagrangian formulation and a sliding catenary element considering the out-of-plane stiffness coefficient are put forward.A two-span and a three-span cable structures are taken as examples to verify the sliding cable elements.By comparing the tensions of the two proposed cable elements with the existing research results,the error is less than 1%,which proves the correctness of the proposed elements.The sliding characteristics should be considered in the practical engineering because of the significant difference between the tensions of sliding cable elements and those of cable element without considering sliding.The out-of-plane stiffness coefficient and friction characteristics do not obviously affect the cable tensions.
基金Sponsored by Major Research Plan of the National Natural Science Foundation of China (Grant No.90715021)
文摘In order to figure out the cable flexural rigidity influence on suspension bridges,a contrast model experiment is made:a chain cable model with no flexural rigidity and a wire cable model with some flexural rigidity.And then,four finite element models of a same long-span suspension bridge with different cable element are set up to be analyzed.Both experimental and numerical simulation results show that,with the increase of the span and the decrease of sag-span ratio,the influence of the cable flexural rigidity is significant.The difference of nodes displacement reaches more than 10 cm in construction analysis,which will bring some trouble to the construction.And the difference of the maximum section edge normal stress may reach 15%,which may have an adverse impact onto the bridge.Therefore,considering the cable flexural rigidity is necessary on some analysis of suspension bridges.
基金Project(41672258) supported by the National Natural Science Foundation of ChinaProject(2018045) supported by the Science and Technology Project of Jiangsu Provincial Land and Resources,China。
文摘In FLAC ^(3D),cable element or modified pile element can be used to build slope anchoring model.However,the difference between the two structural elements and their influence on the calculation results have not been studied in depth.In order to solve this problem,the Xiashu loess slope anchoring models based on cable element and modified pile element were constructed respectively.A variety of anchoring schemes were designed by orthogonal experiment method,and then they were brought into the model for calculation and the calculation results were analyzed by range analysis and variance analysis.The results show that the modified pile element can bear the bending moment and reflect the strain softening property of the grout.From the perspective of slope safety factor,the anchorage length and anchor bolt spacing are the main factors affecting the stability of the slope,and the anchorage angle is the secondary factor.The grout in cable element is assumed to be an elastic-perfectly plastic material,so the safety factor of the slope can be significantly increased by increasing the length of the anchor bolts.This will bring potential risks to the slope treatment project.Therefore,in the calculation of the slope anchoring model,the modified pile element is more suitable for simulating the anchor bolt.