The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ...The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.展开更多
It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the inf...It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the influence of different fault angles on tunnel deformation.The Tabaiyi Tunnel,located in Yunnan Province of China passes through a multi-stage fault zone.The dynamic response characteristics of the surrounding rock in the Tabaiyi Tunnel were studied under various fault dip angles and the most unfavorable angle was identified.Physical model tests were conducted using two types of anchor cables with specific parameters.Additionally,a relationship between the engineering rock mass and energy absorption by the anchor cables was established,demonstrating the advantages of negative Poisson's ratio(NPR)anchor cables.Experimental results indicate that stress concentration tends to occur at the junctions between faults and the surrounding rock mass.Tunnels supported by NPR anchor cables effectively mitigate amplification effects,achieving energy absorption increases of up to 87%compared to positive Poisson's ratio(PR)anchor cables.Furthermore,the highest acceleration amplification was observed at a fault dip angle of 45°,with peak acceleration reaching twice that of the original input wave,indicating that this angle should be avoided in tunnel design.These findings provide valuable insights for the safe management of tunnels traversing fault zones.展开更多
In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable...In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.展开更多
Firstly,the concepts of the traveling wave entropy and the feature function of traveling wave entropy were defined.Then the statistic characters of the traveling wave entropy feature function,mean value and variance w...Firstly,the concepts of the traveling wave entropy and the feature function of traveling wave entropy were defined.Then the statistic characters of the traveling wave entropy feature function,mean value and variance were analyzed after the zero-order component of the traveling wave of online cable was selected to serve as the observed object.Finally,the new recognition algorithm of minimum risk neural network was pre- sented.The simulation experiments show that the recognitions of the early fault states can be completed correctly by using the proposed recognition algorithm.The classes of cable faults include in 1-phase ground faults,and the 2-phase short circuit faults or ground faults and the 3-phase short circuit faults or ground faults,open circuit.The fault resistance range is 1×10^(-1)~1×10~9Ω.展开更多
Applying the fault diagnosis techniques to twisted pair copper cable is beneficial to improve the stability and reliability of internet access in Digital Subscriber Line(DSL)Access Network System.The network performan...Applying the fault diagnosis techniques to twisted pair copper cable is beneficial to improve the stability and reliability of internet access in Digital Subscriber Line(DSL)Access Network System.The network performance depends on the occurrence of cable fault along the copper cable.Currently,most of the telecommunication providers monitor the network performance degradation hence troubleshoot the present of the fault by using commercial test gear on-site,which may be resolved using data analytics and machine learning algorithm.This paper presents a fault diagnosis method for twisted pair cable fault detection based on knowledge-based and data-driven machine learning methods.The DSL Access Network is emulated in the laboratory to accommodate VDSL2 Technology with various types of cable fault along the cable distance between 100 m to 1200 m.Firstly,the line operation parameters and loop line testing parameters are collected and used to analyze.Secondly,the feature transformation,a knowledge-based method,is utilized to pre-process the fault data.Then,the random forests algorithms(RFs),a data-driven method,are adopted to train the fault diagnosis classifier and regression algorithm with the processed fault data.Finally,the proposed fault diagnosis method is used to detect and locate the cable fault in the DSL Access Network System.The results show that the cable fault detection has an accuracy of more than 97%,with less minimum absolute error in cable fault localization of less than 11%.The proposed algorithm may assist the telecommunication service provider to initiate automated cable faults identification and troubleshooting in the DSL Access Network System.展开更多
Based on the performance of submarine cables in past earthquakes, an analytical method to determine cable performance under seabed fault movement is proposed in this paper. First, common types of earthquake damage to ...Based on the performance of submarine cables in past earthquakes, an analytical method to determine cable performance under seabed fault movement is proposed in this paper. First, common types of earthquake damage to submarine cables are summarized, which include seabed displacement induced by fault movement, submarine landslides and seabed soil liquefaction, etc. The damage is similar to damage observed to buried pipelines following land earthquakes. The Hengchun earthquake of Dec. 26, 2006 is used as a case study. The M7.2 earthquake occurred in the South China Sea at 20:26 Beijing Time, and caused 14 international submarine cables to sever and break. The results show that the proposed method predicts damage similar to that observed in the Hengchun earthquake. Based on parametric studies of the influence of the water depth and the magnitude of the submarine earthquake, countermeasures to prevent damage to submarine cables are proposed.展开更多
In recent years, more and more electric utilities are using underground cables to distribute electric power rather than overhead transmission line. However, the cost of installation and maintenance of underground cabl...In recent years, more and more electric utilities are using underground cables to distribute electric power rather than overhead transmission line. However, the cost of installation and maintenance of underground cables is very expensive. Thus, the proper design and damage prediction of cables are crucial. This paper is focused on the magnetic force waveforms simulation of cables under different types of faults using PSCAD and COMSOL. The results show that three-phase fault leads to the largest magnetic forces and the maximum magnitude of the forces in the x-direction is about 2.5 N. Also, the magnetic field</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> surrounding the cables are different depend</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> on the arrangements of cables buried method. Although the magnitude is small, considering the long distance and long operating time of underground cables, the forces between cables can cause failures under some conditions. In the future, more types of faults such as high impedance fault and different protect</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> technologies can be studied.展开更多
The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cut...The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cutting roof+NPR anchor cable"(PSCR-NPR),is subjected to scrutiny through theoretical analysis,numerical modelling,and field trials.Furthermore,a comprehensive analysis is undertaken to evaluate the stability control mechanism of this particular technology.The study provides evidence that the utilization of deep-hole directional energy-concentrated blasting facilitates the attainment of directional roof cutting in roadways.The aforementioned procedure leads to the formation of a uniform structural surface on the roof of the roadway and causes modifications in the surrounding geological formation.The examination of the lateral abutment pressure and shear stress distribution,both prior to and subsequent to roof cutting,indicates that the implementation of pre-splitting techniques leads to a noteworthy reduction in pressure.The proposition of incorporating the safety factor Q for roof cutting height is suggested as a method to augment comprehension of the pressure relief phenomenon in the field of engineering.The analysis of numerical simulation has indicated that the optimal pressure relief effect of a mining roadway in a fault area is attained when the value of Q is 1.8.The NPR anchor cable exhibits noteworthy characteristics,including a high level of prestress,continuous resistance,and substantial deformation.After the excavation of the roadway,a notable reduction in radial stress occurs,leading to the reinstatement of the three-phase stress state in the surrounding rock.This restoration is attributed to the substantial prestress exerted on the radial stress.The termination point of the NPR anchor cable is strategically positioned within a stable rock formation,allowing for the utilization of the mechanical characteristics of the deep stable rock mass.This positioning serves to improve the load-bearing capacity of the surrounding rock.The mining roadway within the fault region of Daqiang Coal Mine is outfitted with the PSCR-NPR technology.The drop in shear stress experienced by the rock surrounding the roadway is estimated to be around 30%,whilst the low-stress region of the mining roadway extends by a factor of approximately 5.5.The magnitude of surface displacement convergence experiences a decrease of approximately 45%-50%.The study’s findings provide useful insights regarding the stable of mining roadway in characterized by fault zones.展开更多
基金funded by the National Natural Science Foundation of China (52174096, 52304110)the Fundamental Research Funds for the Central Universities (2022YJSSB03)the Scientific and Technological Projects of Henan Province (232102320238)。
文摘The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.
基金funded by the National Natural Science Foundation of China(Grant No.42377154).
文摘It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the influence of different fault angles on tunnel deformation.The Tabaiyi Tunnel,located in Yunnan Province of China passes through a multi-stage fault zone.The dynamic response characteristics of the surrounding rock in the Tabaiyi Tunnel were studied under various fault dip angles and the most unfavorable angle was identified.Physical model tests were conducted using two types of anchor cables with specific parameters.Additionally,a relationship between the engineering rock mass and energy absorption by the anchor cables was established,demonstrating the advantages of negative Poisson's ratio(NPR)anchor cables.Experimental results indicate that stress concentration tends to occur at the junctions between faults and the surrounding rock mass.Tunnels supported by NPR anchor cables effectively mitigate amplification effects,achieving energy absorption increases of up to 87%compared to positive Poisson's ratio(PR)anchor cables.Furthermore,the highest acceleration amplification was observed at a fault dip angle of 45°,with peak acceleration reaching twice that of the original input wave,indicating that this angle should be avoided in tunnel design.These findings provide valuable insights for the safe management of tunnels traversing fault zones.
基金The National Natural Science Foundation of China(No.61240032)the Natural Science Foundation of Jiangsu Province(No.BK2012560)+1 种基金the College Scientific and Technological Achievements Transformation Promotion Project of Jiangsu Province(No.JH-05)the Science and Technology Support Program of Jiangsu Province(No.BE2012740)
文摘In order to improve the accuracy of cable fault position location at a low cost and make the testing results intuitive, a cable fault detector based on wave form reconstruction is designed. In this detector, the cable fault position is located based on the time-domain pulse reflection (TDR) principle. A pulse waveform is injected in the tested cable, and a high-speed comparator with changeable reference voltages is used to binarize the test pulse waveform to a binary sequence on a certain voltage. Through scanning the reference voltage in a full voltage range, multi-sequences are acquired to reconstruct the pulse waveform transmission in the cable, and then the pulse attenuation feature, electrical open circuit fault, electrical short circuit fault, and the fault position of the cable are diagnosed. Experimental results show that the designed cable fault detector can determine the fault type and its position of the cable being tested, and the testing results are intuitive.
基金the Science and Technology Foundation of Shaanxi Province in China(2003K06G19)
文摘Firstly,the concepts of the traveling wave entropy and the feature function of traveling wave entropy were defined.Then the statistic characters of the traveling wave entropy feature function,mean value and variance were analyzed after the zero-order component of the traveling wave of online cable was selected to serve as the observed object.Finally,the new recognition algorithm of minimum risk neural network was pre- sented.The simulation experiments show that the recognitions of the early fault states can be completed correctly by using the proposed recognition algorithm.The classes of cable faults include in 1-phase ground faults,and the 2-phase short circuit faults or ground faults and the 3-phase short circuit faults or ground faults,open circuit.The fault resistance range is 1×10^(-1)~1×10~9Ω.
基金The authors received the funding from Smart Challenge Fund(SR0218I100)GPPS Grant VOT H404,from Ministry of Science,Technology and Innovation Malaysia,and Research Management Centre(RMC)of Universiti Tun Hussein Onn Malaysia(UTHM)。
文摘Applying the fault diagnosis techniques to twisted pair copper cable is beneficial to improve the stability and reliability of internet access in Digital Subscriber Line(DSL)Access Network System.The network performance depends on the occurrence of cable fault along the copper cable.Currently,most of the telecommunication providers monitor the network performance degradation hence troubleshoot the present of the fault by using commercial test gear on-site,which may be resolved using data analytics and machine learning algorithm.This paper presents a fault diagnosis method for twisted pair cable fault detection based on knowledge-based and data-driven machine learning methods.The DSL Access Network is emulated in the laboratory to accommodate VDSL2 Technology with various types of cable fault along the cable distance between 100 m to 1200 m.Firstly,the line operation parameters and loop line testing parameters are collected and used to analyze.Secondly,the feature transformation,a knowledge-based method,is utilized to pre-process the fault data.Then,the random forests algorithms(RFs),a data-driven method,are adopted to train the fault diagnosis classifier and regression algorithm with the processed fault data.Finally,the proposed fault diagnosis method is used to detect and locate the cable fault in the DSL Access Network System.The results show that the cable fault detection has an accuracy of more than 97%,with less minimum absolute error in cable fault localization of less than 11%.The proposed algorithm may assist the telecommunication service provider to initiate automated cable faults identification and troubleshooting in the DSL Access Network System.
基金The National Scientifi c and Technological Support Project of MST Under Grant No. 2006BAC13B02-0106the Special Research Fund for the Public Institute of China, IGP,CEA Under Grant No. DQJB06A01
文摘Based on the performance of submarine cables in past earthquakes, an analytical method to determine cable performance under seabed fault movement is proposed in this paper. First, common types of earthquake damage to submarine cables are summarized, which include seabed displacement induced by fault movement, submarine landslides and seabed soil liquefaction, etc. The damage is similar to damage observed to buried pipelines following land earthquakes. The Hengchun earthquake of Dec. 26, 2006 is used as a case study. The M7.2 earthquake occurred in the South China Sea at 20:26 Beijing Time, and caused 14 international submarine cables to sever and break. The results show that the proposed method predicts damage similar to that observed in the Hengchun earthquake. Based on parametric studies of the influence of the water depth and the magnitude of the submarine earthquake, countermeasures to prevent damage to submarine cables are proposed.
文摘In recent years, more and more electric utilities are using underground cables to distribute electric power rather than overhead transmission line. However, the cost of installation and maintenance of underground cables is very expensive. Thus, the proper design and damage prediction of cables are crucial. This paper is focused on the magnetic force waveforms simulation of cables under different types of faults using PSCAD and COMSOL. The results show that three-phase fault leads to the largest magnetic forces and the maximum magnitude of the forces in the x-direction is about 2.5 N. Also, the magnetic field</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> surrounding the cables are different depend</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> on the arrangements of cables buried method. Although the magnitude is small, considering the long distance and long operating time of underground cables, the forces between cables can cause failures under some conditions. In the future, more types of faults such as high impedance fault and different protect</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;"> technologies can be studied.
基金funded by the National Natural Science Foundation of China(52174096,42277174)the Fundamental Research Funds for the Central Universities(2022YJSSB03)the Scientific and Technological Projects of Henan Province(232102320238)。
文摘The study focuses on the stability control measures for mining roadways in fault zones of deep mines,using Daqiang Coal Mine as a case study.The control system under consideration,referred to as"pre-splitting cutting roof+NPR anchor cable"(PSCR-NPR),is subjected to scrutiny through theoretical analysis,numerical modelling,and field trials.Furthermore,a comprehensive analysis is undertaken to evaluate the stability control mechanism of this particular technology.The study provides evidence that the utilization of deep-hole directional energy-concentrated blasting facilitates the attainment of directional roof cutting in roadways.The aforementioned procedure leads to the formation of a uniform structural surface on the roof of the roadway and causes modifications in the surrounding geological formation.The examination of the lateral abutment pressure and shear stress distribution,both prior to and subsequent to roof cutting,indicates that the implementation of pre-splitting techniques leads to a noteworthy reduction in pressure.The proposition of incorporating the safety factor Q for roof cutting height is suggested as a method to augment comprehension of the pressure relief phenomenon in the field of engineering.The analysis of numerical simulation has indicated that the optimal pressure relief effect of a mining roadway in a fault area is attained when the value of Q is 1.8.The NPR anchor cable exhibits noteworthy characteristics,including a high level of prestress,continuous resistance,and substantial deformation.After the excavation of the roadway,a notable reduction in radial stress occurs,leading to the reinstatement of the three-phase stress state in the surrounding rock.This restoration is attributed to the substantial prestress exerted on the radial stress.The termination point of the NPR anchor cable is strategically positioned within a stable rock formation,allowing for the utilization of the mechanical characteristics of the deep stable rock mass.This positioning serves to improve the load-bearing capacity of the surrounding rock.The mining roadway within the fault region of Daqiang Coal Mine is outfitted with the PSCR-NPR technology.The drop in shear stress experienced by the rock surrounding the roadway is estimated to be around 30%,whilst the low-stress region of the mining roadway extends by a factor of approximately 5.5.The magnitude of surface displacement convergence experiences a decrease of approximately 45%-50%.The study’s findings provide useful insights regarding the stable of mining roadway in characterized by fault zones.