The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influenc...The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.展开更多
Theoretical study was performed to investigate how the hydration of cadmium ca-tion influences the structure and properties of guanine.The aqueous environment was simulated by both explicit solvent(1-5 water molecule...Theoretical study was performed to investigate how the hydration of cadmium ca-tion influences the structure and properties of guanine.The aqueous environment was simulated by both explicit solvent(1-5 water molecules) model and implicit solvent model.For complexes in which Cd2+ attached to the N(7) and O(6) sites of guanine,energy analysis together with the Natural Bonding Orbital(NBO) analysis were performed to elucidate the bonding characteristics in detail.The most stable structures are penta-coordinate complexes without aqua ligand located at the guanine site.Higher number of water ligands corresponds to higher stabilization energies.Average bonding energies of G-Cd increase with the number of water molecules.Bonding energies of water ligands depend on its position in the complexes.The charge distribution of guanine changed with increasing the number of water ligands,which may also influence the base-pairing pattern of guanine.There is positive charge transfer from guanine to aqua ligand as the number of the hydration waters increases.IEFPCM optimization has results comparable to the [CdG(H2O)5]2+ structure 5a.展开更多
基金Project(2005) supported by the Basic Technology Research Item of Explosive Industry, China
文摘The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.
基金supported by the NNSFC (20973174)the Young Scientist Fund of NSFC (81001403)+1 种基金the Youth Innovation Fundthe Institute Key Program (SZD08003) of FJIRSM
文摘Theoretical study was performed to investigate how the hydration of cadmium ca-tion influences the structure and properties of guanine.The aqueous environment was simulated by both explicit solvent(1-5 water molecules) model and implicit solvent model.For complexes in which Cd2+ attached to the N(7) and O(6) sites of guanine,energy analysis together with the Natural Bonding Orbital(NBO) analysis were performed to elucidate the bonding characteristics in detail.The most stable structures are penta-coordinate complexes without aqua ligand located at the guanine site.Higher number of water ligands corresponds to higher stabilization energies.Average bonding energies of G-Cd increase with the number of water molecules.Bonding energies of water ligands depend on its position in the complexes.The charge distribution of guanine changed with increasing the number of water ligands,which may also influence the base-pairing pattern of guanine.There is positive charge transfer from guanine to aqua ligand as the number of the hydration waters increases.IEFPCM optimization has results comparable to the [CdG(H2O)5]2+ structure 5a.