[ Objective ] This study aimed to verify the feasibility of in silico cloning of functional candidate genes in tea. [ Method ] Theobroma cacao caffeine syn- thase gene BCS1 was used as a probe to search the establishe...[ Objective ] This study aimed to verify the feasibility of in silico cloning of functional candidate genes in tea. [ Method ] Theobroma cacao caffeine syn- thase gene BCS1 was used as a probe to search the established tea EST database using BLAST; 26 tea ESTs highly homologous to BCS1 were obtained, which were assembled using CAP (contig assembly program) of BioEdit software; subsequently, two EST configs harboring ORF were obtained, which were named TCSnewl and TCSnew2, respectively. Nucleotide sequences and deduced amino acid sequences of theses two genes were compared with those of cDNA of tea caffeine synthase gene TCS in the GenBank database that was cloned with experimental biological method. A phylogenetic tree was constructed for homalogous analysis of the deduced amino acid sequences of theses three genes. [ Result] in silico cloning of functional candidate genes in tea using a homologous gene of distantly related species as a probe is a feasible technical means. [ Conclusion] This study provided the basis for in silico cloning of other functional genes in tea.展开更多
基金Supported by National Science and Technology Support Program of China(2011BAD01B01)Youth Talent Innovation Fund of Fujian Academy of Agricultural Sciences(2011QC-2)Special Fund for"Double Hundred Plan"of Fujian Academy of Agricultural Sciences(sbmx1303-1)
文摘[ Objective ] This study aimed to verify the feasibility of in silico cloning of functional candidate genes in tea. [ Method ] Theobroma cacao caffeine syn- thase gene BCS1 was used as a probe to search the established tea EST database using BLAST; 26 tea ESTs highly homologous to BCS1 were obtained, which were assembled using CAP (contig assembly program) of BioEdit software; subsequently, two EST configs harboring ORF were obtained, which were named TCSnewl and TCSnew2, respectively. Nucleotide sequences and deduced amino acid sequences of theses two genes were compared with those of cDNA of tea caffeine synthase gene TCS in the GenBank database that was cloned with experimental biological method. A phylogenetic tree was constructed for homalogous analysis of the deduced amino acid sequences of theses three genes. [ Result] in silico cloning of functional candidate genes in tea using a homologous gene of distantly related species as a probe is a feasible technical means. [ Conclusion] This study provided the basis for in silico cloning of other functional genes in tea.