期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Directing Role of Cage Structure for Crystallization of Zeolites 被引量:1
1
作者 Li Shougui, Li Xikai and Xu Ruren (Department of Chemistry, Jilin University, Changchun) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1989年第3期206-211,共6页
The directing mechanisms of liquid directing agents of zeolite Y and zeolite L were studied by means of light transmission, ultracentrifugation, NMR, XRD and “cross-exchange” experiments. It was discovered that not ... The directing mechanisms of liquid directing agents of zeolite Y and zeolite L were studied by means of light transmission, ultracentrifugation, NMR, XRD and “cross-exchange” experiments. It was discovered that not only microcfystals of zeolites, but also cage structures of zeolites play the directing role for crystallization of zeolites. 展开更多
关键词 Directing role Cage structure Directing mechanism
下载PDF
Cage and ladder structures of silsesquioxanes characterized by UV-MALDI-TOF mass spectrometry 被引量:1
2
作者 尤宏 胡立江 +2 位作者 刘琰 张兴文 张皓 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第3期295-299,共5页
The molar mass distribution of SSO in the first generation derived from the hydrolytic condensation oftwo trialkoxysilanes, [ 3- ( Methacryloxy ) propyl ] trimethoxysilane ( MPMS ) and vinyltrimethoxysilane ( VMS ) ,a... The molar mass distribution of SSO in the first generation derived from the hydrolytic condensation oftwo trialkoxysilanes, [ 3- ( Methacryloxy ) propyl ] trimethoxysilane ( MPMS ) and vinyltrimethoxysilane ( VMS ) ,are determined by UV-MALDI-TOF MS. The comparisons of theoretical masses with experimental masses arecalculated using the proposed compounds, which are assigned to formulas Tn (OH)m, Tn (OMe)y orTn(OH)x(OMe)y[T=RSiO1.5 (x+y)/2n, R=--(CH2)3OOCCH(CH3)CH2 and--CHCH2]. Both theproposed cage and ladder structures of SSO derived from similar sol-gel process of monomers are illustrated. Thecauses for the difference in structures between SSO M and SSO V is discussed as well. 展开更多
关键词 molar mass distribution hydrolytic condensation cage and ladder structure
下载PDF
Air flow patterns and noise analysis inside high speed angular contact ball bearings 被引量:3
3
作者 翟强 闫柯 +2 位作者 张优云 朱永生 王亚泰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3358-3366,共9页
The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further cause... The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing. 展开更多
关键词 high speed angular contact ball bearing air phase flow heat transfer efficiency cage structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部