Lanthanum-containing(LaX)and cerium-containing X zeolites(CeX)were prepared by a doubleexchange,double-calcination method.By changing the calcination atmospheres between nitrogen and air,the Ce^(IV) contents in CeX ze...Lanthanum-containing(LaX)and cerium-containing X zeolites(CeX)were prepared by a doubleexchange,double-calcination method.By changing the calcination atmospheres between nitrogen and air,the Ce^(IV) contents in CeX zeolites were adjusted and their impacts on physicochemical properties and catalytic performance in isobutane alkylation were established.The crystallinity of CeX zeolite was found to be negatively correlated with the Ce^(IV) content.This i s believed to be due to the water formed during the oxidation of Ce^(III),which facilitates the framework dealumination.As a consequence,calcining in air resulted in a great elimination of strong Brønsted acid sites while under nitrogen protection,this phenomenon was mostly hindered and the sample’s acidity was preserved.When tested in a continuously flowed slurry reactor,the catalyst lifetime for isobutane alkylation was found to be linearly related to the strong Brønsted acid concentration.In addition,Ce^(3+)was found more benefit for the hydride transfer compared with La^(3+),which is ascribed to the stronger polarization effect on the CH bond of isobutane.Moreover,the decline of hydride transfer activity can be slowed down by the catalytic cracking of the bulky molecules.Based on the product distribution,a new catalytic cycle of dimethylhexanes(DMHs)involving a direct formation of isobutene rather than tert-butyl carbocation was proposed in isobutane alkylation.展开更多
Integrated CO_(2)capture and utilization(ICCU)technology requires dual functional materials(DFMs)to carry out the process in a single reaction system.The influence of the calcination atmosphere on efficiency of 4%Ru-8...Integrated CO_(2)capture and utilization(ICCU)technology requires dual functional materials(DFMs)to carry out the process in a single reaction system.The influence of the calcination atmosphere on efficiency of 4%Ru-8%Na_(2)CO_(3)-8%CaO/γ-Al_(2)O_(3)DFM is studied.The adsorbent precursors are first co-impregnated onto alumina and calcined in air.Then,Ru precursor is impregnated and four aliquotes are subjected to different calcination protocols:static air in muffle or under different mixtures(10%H_(2)/N_(2),50%H_(2)/N_(2)and N_(2))streams.Samples are characterized by XRD,N_(2)adsorption-desorption,H_(2)chemisorption,TEM,XPS,H_(2)-TPD,H_(2)-TPR,CO_(2)-TPD and TPSR.The catalytic behavior is evaluated,in cycles of CO_(2)adsorption and hydrogenation to CH_(4),and temporal evolution of reactants and products concentrations is analyzed.The calcination atmosphere influences the physicochemical properties and,ultimately,activity of DFMs.Characterization data and catalytic performance discover the acccomodation of Ru nanoparticles disposition and basic sites is mostly influencing the catalytic activity.DFM calcined under N_(2)flow(RuNaCa-N_(2))shows the highest CH_(4)production(449μmol/g at 370℃),because a well-controlled decomposition of precursors which favors the better accomodation of adsorbent and Ru phases,maximizing the specific surface area,the Ru-basic sites interface and the participation of different basic sites in the CO_(2)methanation reaction.Thus,the calcination in a N_(2)flow is revealed as the optimal calcination protocol to achieve highly efficient DFM for integrated CO_(2)adsorption and hydrogenation applications.展开更多
In this study,water-dispersible graphitic carbon nitride(g-C_(3)N_(4))photocatalysts were successively prepared through the chemically oxidative etching of bulk g-C_(3)N_(4) that was polymerized thermally in different...In this study,water-dispersible graphitic carbon nitride(g-C_(3)N_(4))photocatalysts were successively prepared through the chemically oxidative etching of bulk g-C_(3)N_(4) that was polymerized thermally in different calcination atmospheres such as air,CO_(2),and N_(2).The different calcination atmospheres directly influenced the physicochemical and optical properties of both bulk and water-dispersible g-C_(3)N_(4),changing the photocatalytic degradation behavior of methylene blue(MB)and tetracycline hydrochloride(TCHCl)for water-dispersible g-C_(3)N_(4).The bubble-burst process in the thermal polymerization of thiourea produced defective edges containing C=O groups that preferred substituting the C-NHx groups over bulk g-C_(3)N_(4).In the oxygen-free N_(2) atmosphere among the different calcination atmospheres,more C=O functional groups were generated on the defective edges of bulk g-C_(3)N_(4),resulting in the highest N vacancy of the tri-s-triazine structure.During the successive chemical oxidation,S-or O-containing functional groups were introduced onto water-dispersible g-C_(3)N_(4).The water-dispersible g-C_(3)N_(4) photocatalyst from the oxygen-free N_(2) atmosphere(NTw)contained the most O-and S-functional groups on the g-C_(3)N_(4) surface.Consequently,NTw exhibited the highest photocatalytic activity in the MB and TC-HCl photodegradation because of its slowest recombination process,which was ascribed to the unique surface properties of NTw such as abundant functional groups on the defective edges and N-deficient property.展开更多
Among multitudinous metal‐oxide catalysts for the selective catalytic reduction of NOx with NH3(NH3‐SCR),Mn‐based catalysts have become very popular and developed rapidly in recent years because of its superior low...Among multitudinous metal‐oxide catalysts for the selective catalytic reduction of NOx with NH3(NH3‐SCR),Mn‐based catalysts have become very popular and developed rapidly in recent years because of its superior low‐temperature denitrification activity,mainly originating from multi‐valence of Mn.Most studies suggest that the catalytic activity of multi‐component oxides is superior to that of single‐component catalysts owing to the synergistic effect among the metallic elements in such materials,of which more attentions have been given to Ce as an additive owing to its powerful oxygen storage capacity,redox ability and its ready availability.As the core of SCR technology,the research points in catalyst development at the present stage of all researchers in countries mainly centralize on the optimization of active components,carriers,calcination temperature,calcination time and temperature‐raising procedure,giving little thought to the effects of the calcination atmosphere.In the present work,Ce‐modified Mn‐based catalysts were prepared by a simple impregnation method.The effects of the calcination atmosphere(N2,air or O2)on the performance of the resulting materials during NH3‐SCR and its causes of the differences were subsequently investigated and characterized using various analytical methods.Data obtained from X‐ray diffraction,thermogravimetry and temperature‐programmed reduction with hydrogen show that calcination under N2reduces both the degree of oxidation and crystallization of the MnOx.Scanning electron microscopy also demonstrates that the use of N2inhibits the growth of grains and increases the dispersion of the catalysts.In addition,the results of temperature‐programmed desorption with ammonia indicate that catalysts calcined under N2exhibit a greater quantity of acid sites.Finally,X‐ray photoelectron spectrometry and activity results demonstrate that MnOx in the lower valence states is more favorable for NH3‐SCR reactions.In conclusion,catalysts calcined under N2show superior performance during NH3‐SCR for NOx removal,allowing NO conversions up to94%at473K.展开更多
基金This work was supported by the National Key Research and Development Program of China(2017YFA0206803)the National Natural Science Foundation of China(21878315)+3 种基金the Key Programs of the Chinese Academy of Sciences(KFZD-SW-413)the Key Programs of Innovation Academy for Green Manufacture,CAS(IAGM2020C17)K.C.Wong Education Foundation(No.GJTD-2018-04)the Major Program of National Natural Science Foundation of China(21890762).
文摘Lanthanum-containing(LaX)and cerium-containing X zeolites(CeX)were prepared by a doubleexchange,double-calcination method.By changing the calcination atmospheres between nitrogen and air,the Ce^(IV) contents in CeX zeolites were adjusted and their impacts on physicochemical properties and catalytic performance in isobutane alkylation were established.The crystallinity of CeX zeolite was found to be negatively correlated with the Ce^(IV) content.This i s believed to be due to the water formed during the oxidation of Ce^(III),which facilitates the framework dealumination.As a consequence,calcining in air resulted in a great elimination of strong Brønsted acid sites while under nitrogen protection,this phenomenon was mostly hindered and the sample’s acidity was preserved.When tested in a continuously flowed slurry reactor,the catalyst lifetime for isobutane alkylation was found to be linearly related to the strong Brønsted acid concentration.In addition,Ce^(3+)was found more benefit for the hydride transfer compared with La^(3+),which is ascribed to the stronger polarization effect on the CH bond of isobutane.Moreover,the decline of hydride transfer activity can be slowed down by the catalytic cracking of the bulky molecules.Based on the product distribution,a new catalytic cycle of dimethylhexanes(DMHs)involving a direct formation of isobutene rather than tert-butyl carbocation was proposed in isobutane alkylation.
基金supported by Ministry of Science and InnovationNational Research Agency(Project PID2019-105960RBC21)+1 种基金by the Basque Government(Project IT1509-2022)One of the authors(JAOC)acknowledges the post-doctoral research grant(DOCREC20/49)provided by the University of the Basque Country。
文摘Integrated CO_(2)capture and utilization(ICCU)technology requires dual functional materials(DFMs)to carry out the process in a single reaction system.The influence of the calcination atmosphere on efficiency of 4%Ru-8%Na_(2)CO_(3)-8%CaO/γ-Al_(2)O_(3)DFM is studied.The adsorbent precursors are first co-impregnated onto alumina and calcined in air.Then,Ru precursor is impregnated and four aliquotes are subjected to different calcination protocols:static air in muffle or under different mixtures(10%H_(2)/N_(2),50%H_(2)/N_(2)and N_(2))streams.Samples are characterized by XRD,N_(2)adsorption-desorption,H_(2)chemisorption,TEM,XPS,H_(2)-TPD,H_(2)-TPR,CO_(2)-TPD and TPSR.The catalytic behavior is evaluated,in cycles of CO_(2)adsorption and hydrogenation to CH_(4),and temporal evolution of reactants and products concentrations is analyzed.The calcination atmosphere influences the physicochemical properties and,ultimately,activity of DFMs.Characterization data and catalytic performance discover the acccomodation of Ru nanoparticles disposition and basic sites is mostly influencing the catalytic activity.DFM calcined under N_(2)flow(RuNaCa-N_(2))shows the highest CH_(4)production(449μmol/g at 370℃),because a well-controlled decomposition of precursors which favors the better accomodation of adsorbent and Ru phases,maximizing the specific surface area,the Ru-basic sites interface and the participation of different basic sites in the CO_(2)methanation reaction.Thus,the calcination in a N_(2)flow is revealed as the optimal calcination protocol to achieve highly efficient DFM for integrated CO_(2)adsorption and hydrogenation applications.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.2020R1A4A4079954 and 2021R1A2B5B01001448)。
文摘In this study,water-dispersible graphitic carbon nitride(g-C_(3)N_(4))photocatalysts were successively prepared through the chemically oxidative etching of bulk g-C_(3)N_(4) that was polymerized thermally in different calcination atmospheres such as air,CO_(2),and N_(2).The different calcination atmospheres directly influenced the physicochemical and optical properties of both bulk and water-dispersible g-C_(3)N_(4),changing the photocatalytic degradation behavior of methylene blue(MB)and tetracycline hydrochloride(TCHCl)for water-dispersible g-C_(3)N_(4).The bubble-burst process in the thermal polymerization of thiourea produced defective edges containing C=O groups that preferred substituting the C-NHx groups over bulk g-C_(3)N_(4).In the oxygen-free N_(2) atmosphere among the different calcination atmospheres,more C=O functional groups were generated on the defective edges of bulk g-C_(3)N_(4),resulting in the highest N vacancy of the tri-s-triazine structure.During the successive chemical oxidation,S-or O-containing functional groups were introduced onto water-dispersible g-C_(3)N_(4).The water-dispersible g-C_(3)N_(4) photocatalyst from the oxygen-free N_(2) atmosphere(NTw)contained the most O-and S-functional groups on the g-C_(3)N_(4) surface.Consequently,NTw exhibited the highest photocatalytic activity in the MB and TC-HCl photodegradation because of its slowest recombination process,which was ascribed to the unique surface properties of NTw such as abundant functional groups on the defective edges and N-deficient property.
文摘Among multitudinous metal‐oxide catalysts for the selective catalytic reduction of NOx with NH3(NH3‐SCR),Mn‐based catalysts have become very popular and developed rapidly in recent years because of its superior low‐temperature denitrification activity,mainly originating from multi‐valence of Mn.Most studies suggest that the catalytic activity of multi‐component oxides is superior to that of single‐component catalysts owing to the synergistic effect among the metallic elements in such materials,of which more attentions have been given to Ce as an additive owing to its powerful oxygen storage capacity,redox ability and its ready availability.As the core of SCR technology,the research points in catalyst development at the present stage of all researchers in countries mainly centralize on the optimization of active components,carriers,calcination temperature,calcination time and temperature‐raising procedure,giving little thought to the effects of the calcination atmosphere.In the present work,Ce‐modified Mn‐based catalysts were prepared by a simple impregnation method.The effects of the calcination atmosphere(N2,air or O2)on the performance of the resulting materials during NH3‐SCR and its causes of the differences were subsequently investigated and characterized using various analytical methods.Data obtained from X‐ray diffraction,thermogravimetry and temperature‐programmed reduction with hydrogen show that calcination under N2reduces both the degree of oxidation and crystallization of the MnOx.Scanning electron microscopy also demonstrates that the use of N2inhibits the growth of grains and increases the dispersion of the catalysts.In addition,the results of temperature‐programmed desorption with ammonia indicate that catalysts calcined under N2exhibit a greater quantity of acid sites.Finally,X‐ray photoelectron spectrometry and activity results demonstrate that MnOx in the lower valence states is more favorable for NH3‐SCR reactions.In conclusion,catalysts calcined under N2show superior performance during NH3‐SCR for NOx removal,allowing NO conversions up to94%at473K.