Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of indus...Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of industrial CO<sub>2</sub> emissions. On average 0.8 to 0.9 ton of CO<sub>2</sub> is emitted to produce one ton of OPC. In this paper, partial substitution of clinker (30% - 35%) by the calcined clay-limestone mixture was investigated in order to produce an eco-cement (LC3). Analyzes by XRF, XRD and ATG/ATD have characterized different components, determined the calcination temperature and selected the right clay which can act as effective Supplementary Cementitious Material (SCM). Mechanical tests on mortar carried out over a period of 90 days. The WBCSD/WRI “Greenhouse Gas Protocol” methodology then allowed the calculation of CO<sub>2</sub> emissions into the atmosphere. Three types of clay are available in the Songololo Region. The kaolinite is the principal clay mineral and its content varies from 27% to 34%. The sum of kaolinite and amorphous phase which enable clay to react with cementitious material ranges from 57% to 60%. The SiO<sub>2</sub> content ranges from 33% to 76%, the Alumina content from 12% to 20% so that the ratio Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> is on the higher side (0.17 - 0.53). The calcination window is between 750°C and 850°C and the best clay which can act as SCM identified. The clinker’s substitution reduced CO<sub>2</sub> emissions from 0.824 ton of CO<sub>2</sub> for one ton of OPC to 0.640 ton of CO<sub>2</sub> for one ton of LC3, means 22% less emissions. The compressive strengths developed by LC3 vary from 8.91 to 57.6 MPa (Day 1 to Day 90), exceed those of references 32.5 cement and are close to 42.5 cement. In view of the results, LC3 cement can be considered for industrial trials.展开更多
This paper investigates the properties of hydrated binary and ternary blended cements using limestone and calcined clay pozzolan as supplementary cementitious materials. The blended cements were hydrated and their pha...This paper investigates the properties of hydrated binary and ternary blended cements using limestone and calcined clay pozzolan as supplementary cementitious materials. The blended cements were hydrated and their phase compositions were evaluated by thermogravimetric and powder X-ray diffraction at 28 days. The morphology of the samples was also determined. The water demand, setting time, compressive and flexural strengths of mortar and concrete samples were determined up to 365 days. The study concluded that the portlandite [Ca(OH)2] content was considerably reduced whilst ettfingite formation were enhanced as a result of admixture reactions. The water demand and setting times of blended cements were lower than OPC with 5% admixture content but higher with increasing content. The mechanical test results also showed that Class 42.5N and 32.5R cements can be produced from the binary and ternary blends containing up to 10% and 20% admixtures, respectively.展开更多
There are high costs in paving services in the Brazilian Amazon region, mainly due to the lack of coarse aggregate--pebble or crushed stone---in addition to the elevated rainfall and the high geographic expanse of the...There are high costs in paving services in the Brazilian Amazon region, mainly due to the lack of coarse aggregate--pebble or crushed stone---in addition to the elevated rainfall and the high geographic expanse of the region. The natural coarse aggregate often used in that region is extracted from the riverbeds a distance no less than 500 km from the major cities. In search of a technical, economic and environmental alternative to work around the problem, using an unconventional material that could replace the pebble or crushed stone, a study was carded out on natural clay, considered an abundant mineral resource, especially in the Amazon Basin. A manual mill was used for this purpose, consisting of four square metal nozzles of dimensions 12.7 mm, 9.5 mm, 4.8 mm and 2.0 mm, used for moulding the wet ribbon clay. After that, firing was carried out at temperatures of 780℃, 850℃, 950℃, 1,050 ℃ to 1,150℃ A comparative analysis between conventional hot mixed asphalt--using pebble as coarse aggregate--and that employing synthetic aggregate was made. In a general way, hot mixed asphalt using synthetic aggregate showed excellent results of physical and mechanical properties, in relation to the conventional mixture, mainly at higher temperature of aggregate calcination.展开更多
Limestone calcined clay cement(LC3)is an environment-friendly and sustainable cementitious material.It has recently gained considerable attention for the stabilization/solidification(S/S)of soils contaminated by heavy...Limestone calcined clay cement(LC3)is an environment-friendly and sustainable cementitious material.It has recently gained considerable attention for the stabilization/solidification(S/S)of soils contaminated by heavy metals.However,the existing studies on S/S of Zn-contaminated soils using LC3 in terms of hydraulic conductivity and microstructural properties as compared to ordinary Portland cement(OPC)are limited.This study focuses on the evaluation of the mechanical,leaching,and microstructural characteristics of Zn-contaminated soils treated with different contents(0%,4%,6%,8%,and 10%)of low-carbon LC3.The engineering performance of the treated Zn-contaminated soils is assessed over time using unconfined compressive strength(UCS),hydraulic conductivity(k),toxicity characteristic leaching procedure(TCLP),and synthetic precipitation leaching procedure(SPLP)tests.Experimental results show that the UCS of Zn-contaminated soils treated with LC3 ranged from 1.47 to 2.49 MPa,which is higher than 1.63%–13.07%for those treated with OPC.The k of Zn-contaminated soils treated with LC3 ranged from 1.16×10^(−8)to 5.18×10^(−8)cm/s as compared to the OPC treated samples.For the leaching properties,the leached Zn from TCLP and SPLP is 1.58–321.10 mg/L and 0.52–284.65 mg/L as the LC3 contents ranged from 4%to 10%.Further,the corresponding pH modeling results indicate that LC3 promotes a relatively suitable dynamic equilibrium condition to immobilize the higher-level Zn contamination.In addition,microscopic analyses demonstrate that the formations of hydration products,i.e.,Zn(OH)_(2),Zn_(2)SiO_(4),calcium silicate hydrate(C–S–H),calcium silicate aluminate hydrate(C–A–S–H)gel,ettringite,and CaZn(SiO_(4))(H_(2)O),are the primary mechanisms for the immobilization of Zn.This study also provides an empirical formula between the UCS and k to support the application of LC3-solidified Zn-contaminated soils in practical engineering in the field.展开更多
Limestone Calcined Clay Cement(LC^(3)) is a newly proposed low-carbon cement,which can effectively reduce energy consumption and carbon emissions of the traditional cement industry without changing the basic mechanica...Limestone Calcined Clay Cement(LC^(3)) is a newly proposed low-carbon cement,which can effectively reduce energy consumption and carbon emissions of the traditional cement industry without changing the basic mechanical properties of cement-based materials.In this study,the degradation process of mortar samples of limestone and calcined clay cementitious material under sulfate attack is studied by both macroscopic and microscopic analysis.The results show that compared with pure Portland cement,the addition of calcined clay and limestone can significantly reduce the expansion rate,loss of dynamic modulus and mass loss of mortar specimens under sulfate attack.The addition of calcined clay and limestone will refine the pore size distribution of mortar specimens,then inhibiting the diffusion of sulfate and formation of corrosive products,therefore leading to a significant improvement of the sulfate resistance.展开更多
Limestone calcined clay cement(LC^3),consisting of ordinary Portland cement(OPC)clinker,calcined clay,limestone powder,and gypsum,has been considered a promising solution to current challenges in the cement and concre...Limestone calcined clay cement(LC^3),consisting of ordinary Portland cement(OPC)clinker,calcined clay,limestone powder,and gypsum,has been considered a promising solution to current challenges in the cement and concrete industry,such as high carbon emissions,high energy consumption,and resource shortages.This study carries out a series of experimental investigations of LC^3-based paste,mortar,and concrete,including microstructural analyses(e.g.hydration product characterization and pore structure analysis)and macro-scale testing(e.g.workability and mechanical properties),using raw materials from south China.The results show that,in LC^3 paste,the replacement of clinker by calcined clay and limestone leads to an increased volume of small pores but decreased total volume of pores.The workability of LC^3 mortar and concrete can be readily tailored using conventional superplasticizers.When designed for comparable 28-d compressive strength,the LC^3 mortar and concrete tend to have lower early-age compressive strength,but comparable compressive strength and higher flexural strength than those of the OPC counterparts at late ages.This study also examines the bond-slip behavior between LC^3 concrete and steel bars and finds that the bond strength is comparable to that of OPC concrete with the same 28-d compressive strength,but that the LC^3 concrete-rebar interface exhibits higher bond-slip stiffness.These findings on LC^3 concrete provide fundamental information and guidance for furthering the application of LC^3 binder in structural concrete in the near future.展开更多
Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of...Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of clay minerals and the activity difference between layered and framed clays in this research.The influence of different calcined clay content(2%,4%,6%,8%,10%)on the fluidity,compressive strength,microstructure,phase change,and hydration heat of cement-based materials were analyzed.The calcined clay improves the fluidity of cement-based materials as compared with the uncalcined group.The addition of calcined montmorillonite(CMT)improves the development of mechanical strength,and the optimal compressive strength reaches 85 MPa at 28 days with 8%CMT.However,the activity of calcined clinoptilolite zeolite(CZL)is weak with few reaction sites,which slightly reduced the mechanical strength as compared to the blank sample.The addition of CMT changes the microscopic morphology of hydration products such as C-S-H and C-A-H,leading to the formation and transformation of ettringite in the early stage.It promotes the gradual polymerization of Si-O bonds into Si-O-Si bonds simultaneously,which accelerates the early hydration process.However,CZL acts mainly as a filling function in the cementitious system.In brief,CMT as an admixture can improve the mechanical properties of cement,but CZL has little effect.This work provides a guideline for the applications of calcined clay in cement,considering the influence of clay type on workability and mechanical strength.展开更多
Effects of different heat treatment temperatures on properties of Chinese calcined flint clay based plastic refractories were investigated using Chinese calcined flint clay as starting material, aluminum sulfate and f...Effects of different heat treatment temperatures on properties of Chinese calcined flint clay based plastic refractories were investigated using Chinese calcined flint clay as starting material, aluminum sulfate and fireclay as binding system. The results showed that with temperature rising, Chinese calcined flint clay based plastic refractories shrinked firstly and then expanded. The modulus of rupture (MOR) and the cold crushing strength (CCS) inereased firstly and then decreased from 110 ℃ to 600 ℃ , then increased obviously. Thermal expansion coefficient increased from 110 ℃ to 760 ℃, decreased from 760 ℃ to 1 300 ℃ , and increased from 1 300 ℃ to1500 ℃.展开更多
文摘Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of industrial CO<sub>2</sub> emissions. On average 0.8 to 0.9 ton of CO<sub>2</sub> is emitted to produce one ton of OPC. In this paper, partial substitution of clinker (30% - 35%) by the calcined clay-limestone mixture was investigated in order to produce an eco-cement (LC3). Analyzes by XRF, XRD and ATG/ATD have characterized different components, determined the calcination temperature and selected the right clay which can act as effective Supplementary Cementitious Material (SCM). Mechanical tests on mortar carried out over a period of 90 days. The WBCSD/WRI “Greenhouse Gas Protocol” methodology then allowed the calculation of CO<sub>2</sub> emissions into the atmosphere. Three types of clay are available in the Songololo Region. The kaolinite is the principal clay mineral and its content varies from 27% to 34%. The sum of kaolinite and amorphous phase which enable clay to react with cementitious material ranges from 57% to 60%. The SiO<sub>2</sub> content ranges from 33% to 76%, the Alumina content from 12% to 20% so that the ratio Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> is on the higher side (0.17 - 0.53). The calcination window is between 750°C and 850°C and the best clay which can act as SCM identified. The clinker’s substitution reduced CO<sub>2</sub> emissions from 0.824 ton of CO<sub>2</sub> for one ton of OPC to 0.640 ton of CO<sub>2</sub> for one ton of LC3, means 22% less emissions. The compressive strengths developed by LC3 vary from 8.91 to 57.6 MPa (Day 1 to Day 90), exceed those of references 32.5 cement and are close to 42.5 cement. In view of the results, LC3 cement can be considered for industrial trials.
文摘This paper investigates the properties of hydrated binary and ternary blended cements using limestone and calcined clay pozzolan as supplementary cementitious materials. The blended cements were hydrated and their phase compositions were evaluated by thermogravimetric and powder X-ray diffraction at 28 days. The morphology of the samples was also determined. The water demand, setting time, compressive and flexural strengths of mortar and concrete samples were determined up to 365 days. The study concluded that the portlandite [Ca(OH)2] content was considerably reduced whilst ettfingite formation were enhanced as a result of admixture reactions. The water demand and setting times of blended cements were lower than OPC with 5% admixture content but higher with increasing content. The mechanical test results also showed that Class 42.5N and 32.5R cements can be produced from the binary and ternary blends containing up to 10% and 20% admixtures, respectively.
文摘There are high costs in paving services in the Brazilian Amazon region, mainly due to the lack of coarse aggregate--pebble or crushed stone---in addition to the elevated rainfall and the high geographic expanse of the region. The natural coarse aggregate often used in that region is extracted from the riverbeds a distance no less than 500 km from the major cities. In search of a technical, economic and environmental alternative to work around the problem, using an unconventional material that could replace the pebble or crushed stone, a study was carded out on natural clay, considered an abundant mineral resource, especially in the Amazon Basin. A manual mill was used for this purpose, consisting of four square metal nozzles of dimensions 12.7 mm, 9.5 mm, 4.8 mm and 2.0 mm, used for moulding the wet ribbon clay. After that, firing was carried out at temperatures of 780℃, 850℃, 950℃, 1,050 ℃ to 1,150℃ A comparative analysis between conventional hot mixed asphalt--using pebble as coarse aggregate--and that employing synthetic aggregate was made. In a general way, hot mixed asphalt using synthetic aggregate showed excellent results of physical and mechanical properties, in relation to the conventional mixture, mainly at higher temperature of aggregate calcination.
基金supported by the Scientific Research Foundation from Sun Yat-sen University and the Guangdong Basic and Applied Basic Research Foundation of China(No.2022A1515110443).
文摘Limestone calcined clay cement(LC3)is an environment-friendly and sustainable cementitious material.It has recently gained considerable attention for the stabilization/solidification(S/S)of soils contaminated by heavy metals.However,the existing studies on S/S of Zn-contaminated soils using LC3 in terms of hydraulic conductivity and microstructural properties as compared to ordinary Portland cement(OPC)are limited.This study focuses on the evaluation of the mechanical,leaching,and microstructural characteristics of Zn-contaminated soils treated with different contents(0%,4%,6%,8%,and 10%)of low-carbon LC3.The engineering performance of the treated Zn-contaminated soils is assessed over time using unconfined compressive strength(UCS),hydraulic conductivity(k),toxicity characteristic leaching procedure(TCLP),and synthetic precipitation leaching procedure(SPLP)tests.Experimental results show that the UCS of Zn-contaminated soils treated with LC3 ranged from 1.47 to 2.49 MPa,which is higher than 1.63%–13.07%for those treated with OPC.The k of Zn-contaminated soils treated with LC3 ranged from 1.16×10^(−8)to 5.18×10^(−8)cm/s as compared to the OPC treated samples.For the leaching properties,the leached Zn from TCLP and SPLP is 1.58–321.10 mg/L and 0.52–284.65 mg/L as the LC3 contents ranged from 4%to 10%.Further,the corresponding pH modeling results indicate that LC3 promotes a relatively suitable dynamic equilibrium condition to immobilize the higher-level Zn contamination.In addition,microscopic analyses demonstrate that the formations of hydration products,i.e.,Zn(OH)_(2),Zn_(2)SiO_(4),calcium silicate hydrate(C–S–H),calcium silicate aluminate hydrate(C–A–S–H)gel,ettringite,and CaZn(SiO_(4))(H_(2)O),are the primary mechanisms for the immobilization of Zn.This study also provides an empirical formula between the UCS and k to support the application of LC3-solidified Zn-contaminated soils in practical engineering in the field.
基金supported in part by grants from National Natural Science Foundation of China(52278259).
文摘Limestone Calcined Clay Cement(LC^(3)) is a newly proposed low-carbon cement,which can effectively reduce energy consumption and carbon emissions of the traditional cement industry without changing the basic mechanical properties of cement-based materials.In this study,the degradation process of mortar samples of limestone and calcined clay cementitious material under sulfate attack is studied by both macroscopic and microscopic analysis.The results show that compared with pure Portland cement,the addition of calcined clay and limestone can significantly reduce the expansion rate,loss of dynamic modulus and mass loss of mortar specimens under sulfate attack.The addition of calcined clay and limestone will refine the pore size distribution of mortar specimens,then inhibiting the diffusion of sulfate and formation of corrosive products,therefore leading to a significant improvement of the sulfate resistance.
基金the National Natural Science Foundation of China(Nos.51708360 and 51978407)the Shenzhen Basic Research Project of China(No.JCYJ20180305124106675)+4 种基金the Key Projects for International Cooperation in ScienceTechnology and Innovation of China(No.2018YFE0125000)the Taipei University of TechnologyShenzhen University Joint Research Program of China(No.2020008)the National Science Foundation of the USA(No.1661609)the Advanced Materials for Sustainable Infrastructure Seed Funding Program at Missouri University of Science and Technology,USA。
文摘Limestone calcined clay cement(LC^3),consisting of ordinary Portland cement(OPC)clinker,calcined clay,limestone powder,and gypsum,has been considered a promising solution to current challenges in the cement and concrete industry,such as high carbon emissions,high energy consumption,and resource shortages.This study carries out a series of experimental investigations of LC^3-based paste,mortar,and concrete,including microstructural analyses(e.g.hydration product characterization and pore structure analysis)and macro-scale testing(e.g.workability and mechanical properties),using raw materials from south China.The results show that,in LC^3 paste,the replacement of clinker by calcined clay and limestone leads to an increased volume of small pores but decreased total volume of pores.The workability of LC^3 mortar and concrete can be readily tailored using conventional superplasticizers.When designed for comparable 28-d compressive strength,the LC^3 mortar and concrete tend to have lower early-age compressive strength,but comparable compressive strength and higher flexural strength than those of the OPC counterparts at late ages.This study also examines the bond-slip behavior between LC^3 concrete and steel bars and finds that the bond strength is comparable to that of OPC concrete with the same 28-d compressive strength,but that the LC^3 concrete-rebar interface exhibits higher bond-slip stiffness.These findings on LC^3 concrete provide fundamental information and guidance for furthering the application of LC^3 binder in structural concrete in the near future.
基金The research presented in this paper was supported by National Natural Science Foundation of China(Grant No.52272031)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan),and the Opening Fund of Guangxi Key Laboratory of New Energy and Building Energy Saving(Grant No.19-J-22-2)+3 种基金Key Research and Development Program of Hubei Province(Grant No.2020BAB065)Key Research and Development Program of Jiangxi Province(Grant No.20201BBG71011)Fundamental Research Funds for the Central Universities,CHD(Grant No.300102211506)Opening Fund of Key Laboratory of Advanced Building Materials of Anhui Province(Grant No.JZCL001KF).
文摘Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of clay minerals and the activity difference between layered and framed clays in this research.The influence of different calcined clay content(2%,4%,6%,8%,10%)on the fluidity,compressive strength,microstructure,phase change,and hydration heat of cement-based materials were analyzed.The calcined clay improves the fluidity of cement-based materials as compared with the uncalcined group.The addition of calcined montmorillonite(CMT)improves the development of mechanical strength,and the optimal compressive strength reaches 85 MPa at 28 days with 8%CMT.However,the activity of calcined clinoptilolite zeolite(CZL)is weak with few reaction sites,which slightly reduced the mechanical strength as compared to the blank sample.The addition of CMT changes the microscopic morphology of hydration products such as C-S-H and C-A-H,leading to the formation and transformation of ettringite in the early stage.It promotes the gradual polymerization of Si-O bonds into Si-O-Si bonds simultaneously,which accelerates the early hydration process.However,CZL acts mainly as a filling function in the cementitious system.In brief,CMT as an admixture can improve the mechanical properties of cement,but CZL has little effect.This work provides a guideline for the applications of calcined clay in cement,considering the influence of clay type on workability and mechanical strength.
文摘Effects of different heat treatment temperatures on properties of Chinese calcined flint clay based plastic refractories were investigated using Chinese calcined flint clay as starting material, aluminum sulfate and fireclay as binding system. The results showed that with temperature rising, Chinese calcined flint clay based plastic refractories shrinked firstly and then expanded. The modulus of rupture (MOR) and the cold crushing strength (CCS) inereased firstly and then decreased from 110 ℃ to 600 ℃ , then increased obviously. Thermal expansion coefficient increased from 110 ℃ to 760 ℃, decreased from 760 ℃ to 1 300 ℃ , and increased from 1 300 ℃ to1500 ℃.