The inclusion of CaCO3 and kaolin in polyvinyl chloride (PVC) polymer matrices greatly enhances the physical and mechanical properties of the composite. In this study, the effects of kaolin and surface treatment of Ca...The inclusion of CaCO3 and kaolin in polyvinyl chloride (PVC) polymer matrices greatly enhances the physical and mechanical properties of the composite. In this study, the effects of kaolin and surface treatment of CaCO3 and kaolin particles on the microstructure and mechanical properties of PVC composites filled with kaolin particles via melt blending method were studied by means of SEM, tensile, Charpy impact testing, and FTIR. Treated and untreated kao-lin particles were dispersed in matrices of PVC resin at different concentrations up to 30 wt percentage. The tensile strength, elastic modulus, strain to failure and morphology of the resulting composites were measured for various filler loadings. Uniform dispersion of the fillers into the matrix proved to be a critical factor. SEM images revealed that small sized particles were more agglomerated than micron-sized particles and the amount of agglomerates increased with increasing particle content. Silane treated Kaolin-CaCO3/PVC composites had superior tensile and impact strengths to untreated kaolin-CaCO3/PVC composites. The Young’s modulus of all composites increased with increasing particle content up to maximum at 10% filler loading followed by gradually decreasing as content increased.展开更多
Nano-calcium carbonate composite particles were synthesized by the soapless emulsion polymerization technique of double monomers. The composite particles formation mechanism was investigated. The effects of composite ...Nano-calcium carbonate composite particles were synthesized by the soapless emulsion polymerization technique of double monomers. The composite particles formation mechanism was investigated. The effects of composite particles on the mechanical properties of nano-CaCO3-ABS (acrylonitrile-butadiene-styrene copolymer) composite material were studied. It was validated that the composite particles are made up of the nano-calcium carbonate cores and the shells of alternating copolymers of butyl acrylate (BA) and styrene (St). The shells are chemically grafted and physically wrapped on the surface of nano-calcium carbonate particles. When the composite particles were filled in ABS matrix, the CaCO3 particles are homogeneously dispersed in the composite material as nanoscales. The impact strength of the composite material is obviously enhanced after filling appropriate amounts of composite particles. It can be concluded that the soapless emulsion polymerization of double monomers is an effective method for nano-CaCO3 surface treatment. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
Thorium-234 and particle composition (organic matter, biogenic silica, carbonate and lithogenic component) were examined in the East China Sea (ECS) and the northern South China Sea (NSCS) in order to constrain ...Thorium-234 and particle composition (organic matter, biogenic silica, carbonate and lithogenic component) were examined in the East China Sea (ECS) and the northern South China Sea (NSCS) in order to constrain the particle types scavenging thorium isotopes. Good positive correlations between particulate organic matter (POM) or carbonate and thorium-234 in suspended particulate matter (SPM) indicates that POM and carbonate are efficient to scavenge thorium-234. No relationship between biogenic silica and thorium-234 suggests that geochemical behavior of thorium-234 may be not influenced by biogenic silica. A simple model was used to evaluate the affinity of thorium-234 to different particle components. The results show that POM is the most efficient scavenger for thorium-234 in the ECS and the NSCS, followed by carbonate. The authors' results lend support to the utility of thorium-234 as a proxy of POC and carbonate in the upper layer. However, the strong dependence of thorium scavenging on particle composition challenges thorium-230 as a constant flux proxy.展开更多
文摘The inclusion of CaCO3 and kaolin in polyvinyl chloride (PVC) polymer matrices greatly enhances the physical and mechanical properties of the composite. In this study, the effects of kaolin and surface treatment of CaCO3 and kaolin particles on the microstructure and mechanical properties of PVC composites filled with kaolin particles via melt blending method were studied by means of SEM, tensile, Charpy impact testing, and FTIR. Treated and untreated kao-lin particles were dispersed in matrices of PVC resin at different concentrations up to 30 wt percentage. The tensile strength, elastic modulus, strain to failure and morphology of the resulting composites were measured for various filler loadings. Uniform dispersion of the fillers into the matrix proved to be a critical factor. SEM images revealed that small sized particles were more agglomerated than micron-sized particles and the amount of agglomerates increased with increasing particle content. Silane treated Kaolin-CaCO3/PVC composites had superior tensile and impact strengths to untreated kaolin-CaCO3/PVC composites. The Young’s modulus of all composites increased with increasing particle content up to maximum at 10% filler loading followed by gradually decreasing as content increased.
基金the National Natural Science Foundation of China(No.20236020,20325621)the National R & D Program of China(No.2001BA310A01).
文摘Nano-calcium carbonate composite particles were synthesized by the soapless emulsion polymerization technique of double monomers. The composite particles formation mechanism was investigated. The effects of composite particles on the mechanical properties of nano-CaCO3-ABS (acrylonitrile-butadiene-styrene copolymer) composite material were studied. It was validated that the composite particles are made up of the nano-calcium carbonate cores and the shells of alternating copolymers of butyl acrylate (BA) and styrene (St). The shells are chemically grafted and physically wrapped on the surface of nano-calcium carbonate particles. When the composite particles were filled in ABS matrix, the CaCO3 particles are homogeneously dispersed in the composite material as nanoscales. The impact strength of the composite material is obviously enhanced after filling appropriate amounts of composite particles. It can be concluded that the soapless emulsion polymerization of double monomers is an effective method for nano-CaCO3 surface treatment. 2008 University of Science and Technology Beijing. All rights reserved.
基金The National Natural Science Foundation of China under contract Nos 40606022 and 90411016 the National Key Basic Research Special Foundation Program of China under contract No 2005CB422305
文摘Thorium-234 and particle composition (organic matter, biogenic silica, carbonate and lithogenic component) were examined in the East China Sea (ECS) and the northern South China Sea (NSCS) in order to constrain the particle types scavenging thorium isotopes. Good positive correlations between particulate organic matter (POM) or carbonate and thorium-234 in suspended particulate matter (SPM) indicates that POM and carbonate are efficient to scavenge thorium-234. No relationship between biogenic silica and thorium-234 suggests that geochemical behavior of thorium-234 may be not influenced by biogenic silica. A simple model was used to evaluate the affinity of thorium-234 to different particle components. The results show that POM is the most efficient scavenger for thorium-234 in the ECS and the NSCS, followed by carbonate. The authors' results lend support to the utility of thorium-234 as a proxy of POC and carbonate in the upper layer. However, the strong dependence of thorium scavenging on particle composition challenges thorium-230 as a constant flux proxy.