AIM: To test the effect of the dephytinization of three different commercial infant cereals on iron, calcium, and zinc bioavailability by estimating the uptake, retention, and transport by Caco-2 cells. METHODS: Bot...AIM: To test the effect of the dephytinization of three different commercial infant cereals on iron, calcium, and zinc bioavailability by estimating the uptake, retention, and transport by Caco-2 cells. METHODS: Both dephytinized (by adding an exogenous phytase) and non-dephytinized infant cereals were digested using an in vitro digestion protocol adapted to the gastrointestinal conditions of infants younger than 6 too. Mineral cell retention, transport, and uptake from infant cereals were measured using the soluble fraction of the simulated digestion and the Caco-2 cells. RESULTS: Dephytinization of infant cereals significantly increased (P 〈 0.05) the cell uptake efficiency (from 0.66%-6.05% to 3.93%-13%), retention (from 6.04%-16.68% to 14.75%-20.14%) and transport efficiency (from 0.14%-2.21% to 1.47%-6.02%), of iron, and the uptake efficiency (from 5.0%-35.4% to 7.3%-41.6%) and retention (from 4.05%-20.53% to 14.45%-61.3%) of zinc, whereas calcium only cell uptake showed a significant increase (P 〈 0.05) after removing phytate from most of the samples analyzed. A positive relationship (P 〈 0.05) between mineral solubility and the cell uptake and transport efficiencies was observed. CONCLUSION: Removing phytate from infant cereals had a beneficial effect on iron and zinc bioavailability when infant cereals were reconstituted with water. Since in developing countries cereal-based complementary foods for infants are usually consumed mixed with water, exogenous phytase additions could improve the nutritional value of this weaning food.展开更多
基金Supported by Fundación Séneca,0578/PI/07,Consejería de Educación, Ciencia a Investigación de la Comunidad Autónoma de la Región de Murcia,CONSOLIDER FUN-C-FOOD.Nuevos ingredientes funcionales para mejorar la salud
文摘AIM: To test the effect of the dephytinization of three different commercial infant cereals on iron, calcium, and zinc bioavailability by estimating the uptake, retention, and transport by Caco-2 cells. METHODS: Both dephytinized (by adding an exogenous phytase) and non-dephytinized infant cereals were digested using an in vitro digestion protocol adapted to the gastrointestinal conditions of infants younger than 6 too. Mineral cell retention, transport, and uptake from infant cereals were measured using the soluble fraction of the simulated digestion and the Caco-2 cells. RESULTS: Dephytinization of infant cereals significantly increased (P 〈 0.05) the cell uptake efficiency (from 0.66%-6.05% to 3.93%-13%), retention (from 6.04%-16.68% to 14.75%-20.14%) and transport efficiency (from 0.14%-2.21% to 1.47%-6.02%), of iron, and the uptake efficiency (from 5.0%-35.4% to 7.3%-41.6%) and retention (from 4.05%-20.53% to 14.45%-61.3%) of zinc, whereas calcium only cell uptake showed a significant increase (P 〈 0.05) after removing phytate from most of the samples analyzed. A positive relationship (P 〈 0.05) between mineral solubility and the cell uptake and transport efficiencies was observed. CONCLUSION: Removing phytate from infant cereals had a beneficial effect on iron and zinc bioavailability when infant cereals were reconstituted with water. Since in developing countries cereal-based complementary foods for infants are usually consumed mixed with water, exogenous phytase additions could improve the nutritional value of this weaning food.