Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and...Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.展开更多
The Ce^3+ and Eu^2+ ions codoped calcium zinc chlorosilicate Ca_8Zn(SiO_4)_4Cl_2 phosphors have been synthesized for the first time. The diffuse reflection, excitation and emission spectra of Ca_8Zn(SiO_4)_4Cl_2∶Ce^3...The Ce^3+ and Eu^2+ ions codoped calcium zinc chlorosilicate Ca_8Zn(SiO_4)_4Cl_2 phosphors have been synthesized for the first time. The diffuse reflection, excitation and emission spectra of Ca_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ have been measured at room temperature. The luminescence sensitizaiton of Eu^2+ by Ce^3+ inCa_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ has been expounded under the excitation of ultraviolet light and the efficient nonradiative energy transfer from Ce^3+ to Eu^2+ in this system is confirmed.展开更多
Hepatoblastoma is the most frequent liver malignancy in children.HepG2 has been discovered as a hepatoblastoma-derived cell line and tends to form clumps in culture.Intriguingly,we observed that the addition of calciu...Hepatoblastoma is the most frequent liver malignancy in children.HepG2 has been discovered as a hepatoblastoma-derived cell line and tends to form clumps in culture.Intriguingly,we observed that the addition of calcium ions reduced cell clumping and disassociated HepG2 cells.The calcium signal is in connection with a series of processes critical in the tumorigenesis.Here,we demonstrated that extracellular calcium ions induced morphological changes and enhanced the epithelial-mesenchymal transition in HepG2 cells.Mechanistically,calcium ions promoted HepG2 proliferation and migration by up-regulating the phosphorylation levels of focal adhesion kinase(FAK),protein kinase B,and p38 mitogen-activated protein kinase.The inhibitor of FAK or Ca2+/calmodulin-dependent kinaseⅡ(CaMKⅡ)reversed the Ca2+-induced effects on HepG2 cells,including cell proliferation and migration,epithelial-mesenchymal transition protein expression levels,and phosphorylation levels of FAK and protein kinase B.Moreover,calcium ions decreased HepG2 cells'sensitivity to cisplatin.Furthermore,we found that the expression levels of FAK and CaMKⅡwere increased in hepatoblastoma.The group with high expression levels of FAK and CaMKⅡexhibited significantly lower ImmunoScore as well as CD8+T and NK cells.The expression of CaMKⅡwas positively correlated with that of PDCD1 and LAG3.Correspondingly,the expression of FAK was negatively correlated with that of TNFSF9,TNFRSF4,and TNFRSF18.Collectively,extracellular calcium accelerates HepG2 cell proliferation and migration via FAK and CaMKⅡand enhances cisplatin resistance.FAK and CaMKⅡshape immune cell infiltration and responses in tumor microenvironments,thereby serving as potential targets for hepatoblastoma.展开更多
The Na^+/Ca^(2+) exchanger(NCX) protein family is a part of the cation/Ca^(2+) exchanger superfamily and participates in the regulation of cellular Ca^(2+) homeostasis. NCX1, the most important subtype in the NCX fami...The Na^+/Ca^(2+) exchanger(NCX) protein family is a part of the cation/Ca^(2+) exchanger superfamily and participates in the regulation of cellular Ca^(2+) homeostasis. NCX1, the most important subtype in the NCX family, is expressed widely in various organs and tissues in mammals and plays an especially important role in the physiological and pathological processes of nerves and the cardiovascular system. In the past few years, the function of NCX1 in the digestive system has received increasing attention; NCX1 not only participates in the healing process of gastric ulcer and gastric mucosal injury but also mediates the development of digestive cancer, acute pancreatitis, and intestinal absorption.This review aims to explore the roles of NCX1 in digestive system physiology and pathophysiology in order to guide clinical treatments.展开更多
Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Here...Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Herein,the cation intercalation and ion-exchange were well employed to achieve a K+and Ca2+intercalated V2CTxMXene.A larger interlayer distance and low F surface terminations were thereof obtained,which accelerates the ion transport and promotes the delicate surface of V2CTx MXene.As a result,a package of enhanced capacity,rate performance and cyclability can be achieved.Furthermore,the ion exchange approach can be extended to other 2 D layered materials,and both the interlayer control and the surface modification will be achieved.展开更多
AIM: To investigat the relation between hepatotoxicity of halothane and sevoflurane and altered hepatic calcium homeostasis in enzyme-induced hypoxic rats. METHODS: Forty-eight rats were pretreated with phenobarbita...AIM: To investigat the relation between hepatotoxicity of halothane and sevoflurane and altered hepatic calcium homeostasis in enzyme-induced hypoxic rats. METHODS: Forty-eight rats were pretreated with phenobarbital and randomly divided into six groups (eight in each group) and exposed to O2/N2/1.2 MAC anesthetics for 1 h: normal control (NC), 21% O2/79% N2; hypoxic control (HC), 14% O2/86% N2; normal sevoflurane (NS), 21% O2/ N2/1.2MAC sevoflurane; hypoxic sevoflurane (HS), 14% O2/N2/1.2MAC sevoflurane; normal halothane (NH)21%O2/79%N2/1.2MAC halothane; hypoxic halothane (HH), 14%O2/N2/1.2MAC halothane. Liver specimens and blood were taken 24 h after exposure to calcium and determined by EDX microanalysis. RESULTS: The liver of all rats given halothane (14% O2) had extensive centrilobular necrosis and denaturation. Morphologic damage was accompanied with an increase in serum glutarnic pyruvic transminase. In groups NH and HH, more calcium was precipitated in cytoplasm and mitochondria. CONCLUSION: These results suggest that halothane increases cytosolic Ca^2+ concentration in hepatocytes. Elevation in Ca^2+ concentration is implicated in the mechanism of halothane-induced hepatotoxicity. sevoflurane is less effective in affecting hepatic calcium homeostasis than halothane.展开更多
Studies have suggested that aluminum, a neurotoxic metal, is involved in the progression of neurodegenerative diseases. Previous studies have confirmed that aluminum influences intracellular Ca^2+ homeostasis. Howeve...Studies have suggested that aluminum, a neurotoxic metal, is involved in the progression of neurodegenerative diseases. Previous studies have confirmed that aluminum influences intracellular Ca^2+ homeostasis. However, it remains unclear whether aluminum increases or decreases intracellular Ca^2+ concentrations. The present study demonstrated that Al^3+ competitively binds to calmodulin (CAM), together with Ca^2+, which resulted in loss of capacity of CaM to bind to Ca^2+, leading to increased [Ca^2+]i. Al^3+ stimulated voltage-gated calcium channels on cell membranes, which allowed a small quantity of Ca^2+ into the cells. Al^3+ also promoted calcium release from organelles by stimulating L-Ca^2+αlc to trigger calcium-induced calcium release. Although Al^3+ upregulated expression of Na+/Ca^2+exchanger mRNA, increased levels of Ca^2+ and Na+/Ca^2+ exchanger did not maintain a normal Ca^2+ balance. Al^3+ resulted in disordered intracellular calcium homeostasis by affecting calcium channels, calcium buffering, and calcium expulsion.展开更多
Red-light-induced swelling of the protoplasts isolated from hypocotyl of etiolated mung bean (Phaseolus radiatus L.) was observed only when Ca2+ ions were present in the medium. The optimal CaCl2 concentration was 250...Red-light-induced swelling of the protoplasts isolated from hypocotyl of etiolated mung bean (Phaseolus radiatus L.) was observed only when Ca2+ ions were present in the medium. The optimal CaCl2 concentration was 250 μM. Swelling response declined when Ca2+ was supplied into the medium after red light irradiation. The Ca2+-chelator EGTA eliminated the red-light-induced swelling and 45Ca2+ accumulation in the protoplasts. In contrast, A23187, a Ca2+-ionophore, could mimic the effect of red light in darkness. These results indicate that Ca2+ may play a role in light signal transduction. In addition, swelling response was prevented by TFP and CPZ (both are CaM antagonists), implying the involvement of CaM in red-light-induced and Ca2+ -dependent protoplast swelling.展开更多
The function of Nd^(3+) with different concentrations in oilseed rape under Ca-deficiency was studied. The results indicate that the root surface-area of rape which treated with 3 μmol·L^(-1) Nd(NO_3)_3 is enlar...The function of Nd^(3+) with different concentrations in oilseed rape under Ca-deficiency was studied. The results indicate that the root surface-area of rape which treated with 3 μmol·L^(-1) Nd(NO_3)_3 is enlarged, and the taproot length, root dry weight and root CEC all increase as well as roots oxidizing capacity. Nd^(3+) can replace Ca^(2+) partially, and the replacement action is embodied likely through plasmolemma Ca^(2+)-ATPase with signal transduction pathway. Nd^(3+) shows mainly its toxic action under high concentration (60 μmol·L^(-1)).展开更多
基金supported by the National Natural Science Foundation of China,Nos.62027812(to HS),81771470(to HS),and 82101608(to YL)Tianjin Postgraduate Research and Innovation Project,No.2020YJSS122(to XD)。
文摘Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.
文摘The Ce^3+ and Eu^2+ ions codoped calcium zinc chlorosilicate Ca_8Zn(SiO_4)_4Cl_2 phosphors have been synthesized for the first time. The diffuse reflection, excitation and emission spectra of Ca_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ have been measured at room temperature. The luminescence sensitizaiton of Eu^2+ by Ce^3+ inCa_8Zn(SiO_4)_4Cl_2∶Ce^3+, Eu^2+ has been expounded under the excitation of ultraviolet light and the efficient nonradiative energy transfer from Ce^3+ to Eu^2+ in this system is confirmed.
基金funded by the Jiangsu Medical Scientific Research Project of Jiangsu Health Commission(to Q.Y.)the 789 Outstanding Talent Program of SAHNMU(Grant No.789ZYRC 202070102 to Q.Y.)+1 种基金the Guangzhou Key Medical Discipline Construction Project(to Q.Y.)the National Natural Science Foundation of China(Grant Nos.81870409 and 81671543 to Q.Y.).
文摘Hepatoblastoma is the most frequent liver malignancy in children.HepG2 has been discovered as a hepatoblastoma-derived cell line and tends to form clumps in culture.Intriguingly,we observed that the addition of calcium ions reduced cell clumping and disassociated HepG2 cells.The calcium signal is in connection with a series of processes critical in the tumorigenesis.Here,we demonstrated that extracellular calcium ions induced morphological changes and enhanced the epithelial-mesenchymal transition in HepG2 cells.Mechanistically,calcium ions promoted HepG2 proliferation and migration by up-regulating the phosphorylation levels of focal adhesion kinase(FAK),protein kinase B,and p38 mitogen-activated protein kinase.The inhibitor of FAK or Ca2+/calmodulin-dependent kinaseⅡ(CaMKⅡ)reversed the Ca2+-induced effects on HepG2 cells,including cell proliferation and migration,epithelial-mesenchymal transition protein expression levels,and phosphorylation levels of FAK and protein kinase B.Moreover,calcium ions decreased HepG2 cells'sensitivity to cisplatin.Furthermore,we found that the expression levels of FAK and CaMKⅡwere increased in hepatoblastoma.The group with high expression levels of FAK and CaMKⅡexhibited significantly lower ImmunoScore as well as CD8+T and NK cells.The expression of CaMKⅡwas positively correlated with that of PDCD1 and LAG3.Correspondingly,the expression of FAK was negatively correlated with that of TNFSF9,TNFRSF4,and TNFRSF18.Collectively,extracellular calcium accelerates HepG2 cell proliferation and migration via FAK and CaMKⅡand enhances cisplatin resistance.FAK and CaMKⅡshape immune cell infiltration and responses in tumor microenvironments,thereby serving as potential targets for hepatoblastoma.
基金Supported by the National Natural Science Foundation of China,No.816660412 to Xie R and No.81160265 to Xu JY
文摘The Na^+/Ca^(2+) exchanger(NCX) protein family is a part of the cation/Ca^(2+) exchanger superfamily and participates in the regulation of cellular Ca^(2+) homeostasis. NCX1, the most important subtype in the NCX family, is expressed widely in various organs and tissues in mammals and plays an especially important role in the physiological and pathological processes of nerves and the cardiovascular system. In the past few years, the function of NCX1 in the digestive system has received increasing attention; NCX1 not only participates in the healing process of gastric ulcer and gastric mucosal injury but also mediates the development of digestive cancer, acute pancreatitis, and intestinal absorption.This review aims to explore the roles of NCX1 in digestive system physiology and pathophysiology in order to guide clinical treatments.
基金financial support provided by the National Natural Science Foundation of China(No.51932005)Liao Ning Revitalization Talents Program(XLYC1807175)+4 种基金the Joint Research Fund Liaoning Shenyang National Laboratory for Materials Science(SYNL)(20180510047)the Research Fund of SYNL(L2019F38)the Youth Innovation Promotion Association CAS(2015152)the Program for the Development of Science and Technology of Jilin Province(No.20190201309JC)the Project of Development and Reform Commission of Jilin Province(No.2019C042-1)。
文摘Although MXenes is highly attractive as anode materials of lithium ion batteries,it sets a bottleneck for higher capacity of the V2CTxMXene due to the limited interlayer space and the derived surface terminations.Herein,the cation intercalation and ion-exchange were well employed to achieve a K+and Ca2+intercalated V2CTxMXene.A larger interlayer distance and low F surface terminations were thereof obtained,which accelerates the ion transport and promotes the delicate surface of V2CTx MXene.As a result,a package of enhanced capacity,rate performance and cyclability can be achieved.Furthermore,the ion exchange approach can be extended to other 2 D layered materials,and both the interlayer control and the surface modification will be achieved.
基金Supported by Military Medical Science Found of China, No.39400126
文摘AIM: To investigat the relation between hepatotoxicity of halothane and sevoflurane and altered hepatic calcium homeostasis in enzyme-induced hypoxic rats. METHODS: Forty-eight rats were pretreated with phenobarbital and randomly divided into six groups (eight in each group) and exposed to O2/N2/1.2 MAC anesthetics for 1 h: normal control (NC), 21% O2/79% N2; hypoxic control (HC), 14% O2/86% N2; normal sevoflurane (NS), 21% O2/ N2/1.2MAC sevoflurane; hypoxic sevoflurane (HS), 14% O2/N2/1.2MAC sevoflurane; normal halothane (NH)21%O2/79%N2/1.2MAC halothane; hypoxic halothane (HH), 14%O2/N2/1.2MAC halothane. Liver specimens and blood were taken 24 h after exposure to calcium and determined by EDX microanalysis. RESULTS: The liver of all rats given halothane (14% O2) had extensive centrilobular necrosis and denaturation. Morphologic damage was accompanied with an increase in serum glutarnic pyruvic transminase. In groups NH and HH, more calcium was precipitated in cytoplasm and mitochondria. CONCLUSION: These results suggest that halothane increases cytosolic Ca^2+ concentration in hepatocytes. Elevation in Ca^2+ concentration is implicated in the mechanism of halothane-induced hepatotoxicity. sevoflurane is less effective in affecting hepatic calcium homeostasis than halothane.
基金supported by the Department of Hygienic Toxicology,Public Health College,Harbin Medical University,China
文摘Studies have suggested that aluminum, a neurotoxic metal, is involved in the progression of neurodegenerative diseases. Previous studies have confirmed that aluminum influences intracellular Ca^2+ homeostasis. However, it remains unclear whether aluminum increases or decreases intracellular Ca^2+ concentrations. The present study demonstrated that Al^3+ competitively binds to calmodulin (CAM), together with Ca^2+, which resulted in loss of capacity of CaM to bind to Ca^2+, leading to increased [Ca^2+]i. Al^3+ stimulated voltage-gated calcium channels on cell membranes, which allowed a small quantity of Ca^2+ into the cells. Al^3+ also promoted calcium release from organelles by stimulating L-Ca^2+αlc to trigger calcium-induced calcium release. Although Al^3+ upregulated expression of Na+/Ca^2+exchanger mRNA, increased levels of Ca^2+ and Na+/Ca^2+ exchanger did not maintain a normal Ca^2+ balance. Al^3+ resulted in disordered intracellular calcium homeostasis by affecting calcium channels, calcium buffering, and calcium expulsion.
文摘Red-light-induced swelling of the protoplasts isolated from hypocotyl of etiolated mung bean (Phaseolus radiatus L.) was observed only when Ca2+ ions were present in the medium. The optimal CaCl2 concentration was 250 μM. Swelling response declined when Ca2+ was supplied into the medium after red light irradiation. The Ca2+-chelator EGTA eliminated the red-light-induced swelling and 45Ca2+ accumulation in the protoplasts. In contrast, A23187, a Ca2+-ionophore, could mimic the effect of red light in darkness. These results indicate that Ca2+ may play a role in light signal transduction. In addition, swelling response was prevented by TFP and CPZ (both are CaM antagonists), implying the involvement of CaM in red-light-induced and Ca2+ -dependent protoplast swelling.
文摘The function of Nd^(3+) with different concentrations in oilseed rape under Ca-deficiency was studied. The results indicate that the root surface-area of rape which treated with 3 μmol·L^(-1) Nd(NO_3)_3 is enlarged, and the taproot length, root dry weight and root CEC all increase as well as roots oxidizing capacity. Nd^(3+) can replace Ca^(2+) partially, and the replacement action is embodied likely through plasmolemma Ca^(2+)-ATPase with signal transduction pathway. Nd^(3+) shows mainly its toxic action under high concentration (60 μmol·L^(-1)).