期刊文献+
共找到8,403篇文章
< 1 2 250 >
每页显示 20 50 100
Development and Characterization of Calcium Based Biocomposites Using Waste Material (Calcite Stones) for Biomedical Applications
1
作者 Tasmim Adry Nuzhat Tabassum Maisha +2 位作者 Md. Abdul Gafur Suraya Sabrin Soshi Maruf Hasan 《Materials Sciences and Applications》 2024年第5期113-135,共23页
Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and character... Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and characterization of Calcium-based biocomposites: Hydroxyapatite (HAP), and PVA-Gelatin-HAP films. For the preparation of Calcium-based biocomposites, an unconventional source, the waste material calcite stone, was used as calcium raw material, and by the process of calcination, calcium oxide was synthesized. From calcium oxide, HAP was prepared by chemical precipitation method, which was later added in different proportions to PVA-Gelatin solution and finally dried to form biocomposite films. Then the different properties of PVA/Gelatin/HAP composite, for instance, chemical, mechanical, thermal, and swelling properties due to the incorporation of various proportions of HAP in PVA-Gelatin solution, were investigated. The characterization of the HAP was conducted by X-ray Diffraction Analysis, and the characterization of HAP-PVA-Gelatin composites was done by Fourier Transform Infrared Spectroscopy, Thermomechanical Analysis, Tensile test, Thermogravimetric Differential Thermal Analysis, and Swelling Test. The produced biocomposite films might have applications in orthopedic implants, drug delivery, bone tissue engineering, and wound healing. 展开更多
关键词 HYDROXYAPATITE calcium-based Biocomposites PVA-Gelatin Films Drug Delivery Bone Tissue Engineering
下载PDF
Modelling of the variation of granular base materials resilient modulus with material characteristics and humidity conditions
2
作者 Jean-Pascal Bilodeau Erdrick Leandro Perez-Gonzalez Ali Saeidi 《Journal of Road Engineering》 2024年第1期27-35,共9页
This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines... This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics. 展开更多
关键词 Resilient modulus Degree of saturation Humidity conditions Unbound granular materials Pavement base
下载PDF
Effects of Al_(2)O_(3)-SiO_(2) Raw Material Types on Properties of Anorthite Based Insulation Refractories
3
作者 DU Juan GUO Huishi +4 位作者 YANG Jialin LI Wenfeng GUI Yanghai ZHAO Zhiqiang LIU Yingfan 《China's Refractories》 CAS 2024年第1期23-27,共5页
To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green ... To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green and pollution-free kaolin,kyanite,andalusite and sillimanite as Al_(2)O_(3)-SiO_(2) raw materials,respectively,and industrial CaCO_(3) as the CaO source.Effects of Al_(2)O_(3)-SiO_(2) raw material types on the physical properties,phase composition and microstructure were investigated.The results are as follows.All samples prepared by different Al_(2)O_(3)-SiO_(2) raw materials have hexagonal flake anorthite and a small amount of mullite and corundum.Their bulk density and thermal conductivity decrease in the order of using kaolin,andalusite,kyanite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,but their apparent porosity increases.Moreover,in the sample with kaolin,the bonding between anorthite crystals on the pore walls is closer than that of the other samples,which is conducive to increasing the cold crushing strength.The bonding between anorthite crystals on pore walls gradually decreases in the order of using kyanite,andalusite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,thus their cold crushing strength decreases accordingly.In comprehensive consideration,the properties of the sample from kyanite are the optimal.Its apparent porosity,thermal conductivity and cold crushing strength are 84.6%,0.141 W·m^(-1)·K^(-1) and 1.89 MPa,respectively. 展开更多
关键词 anorthite based insulation refractories Al_(2)O_(3)-SiO_(2)raw materials crushing strength thermal conductivity microstructure
下载PDF
Recentadvancesincarbon‐basedmaterials for solar‐driven interfacial photothermal conversion water evaporation:Assemblies,structures,applications,and prospective 被引量:5
4
作者 Yanmin Li Yanying Shi +4 位作者 Haiwen Wang Tiefeng Liu Xiuwen Zheng Shanmin Gao Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期101-142,共42页
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la... The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology. 展开更多
关键词 APPLICATIONS carbon‐based materials EVAPORATOR photothermal conversion water evaporation
下载PDF
Recycled, Bio-Based, and Blended Composite Materials for 3D Printing Filament: Pros and Cons—A Review
5
作者 Khanh Q. Nguyen Pascal Y. Vuillaume +4 位作者 Lei Hu Jorge López-Beceiro Patrice Cousin Saïd Elkoun Mathieu Robert 《Materials Sciences and Applications》 2023年第3期148-185,共38页
In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing... In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study. 展开更多
关键词 Additive Manufacturing 3D Printing Fused Filament Deposition (FDM) Manufacturing Recycled Bio-based Blended materials INTERLAYER
下载PDF
ELT Materials Design of a Speaking Unit based on Needs Analysis
6
作者 刘艾娟 童兴红 杜文静 《海外英语》 2016年第17期8-10,共3页
In this article,the authors design a speaking unit based on needs analysis following Hutchinson and Waters'(1987) model.First,the rationale in designing this unit is introduced,which involves the teaching approach... In this article,the authors design a speaking unit based on needs analysis following Hutchinson and Waters'(1987) model.First,the rationale in designing this unit is introduced,which involves the teaching approach adopted and relevant theories in organizing the materials.Then,the teaching plan of this speaking unit is provided and some activities are designed to create an authentic and optimal situation for students to practice their speaking skill. 展开更多
关键词 ELT materials design needs analysis task-based language teaching
下载PDF
Mechanical properties of gangue-containing aluminosilicate based cementitious materials 被引量:14
7
作者 Huajian Li Henghu Sun +1 位作者 Xuejun Xiao Hongxia Chen 《Journal of University of Science and Technology Beijing》 CSCD 2006年第2期183-189,共7页
High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash ... High performance aluminosilicate based cementitious materials were produced using calcined gangue as one of the major raw materials. The gangue was calcined at 500℃. The main constituent was calcined gangue, fly ash and slag, while alkali-silicate solutions were used as the diagenetic agent. The structure of gangue-containing aluminosilicate based cementitious materials was studied by the methods of IR, NMR and SEM. The results show that the mechanical properties are affected by the mass ratio between the gangue, slag and fly ash, the kind of activator and additional salt. For 28-day curing time, the compressive strength of the sample with a mass proportion of 2:1:1 (gangue: slag: fly ash) is 58.9 MPa, while the compressive strength of the sample containing 80wt% gangue can still be up to 52.3 MPa. The larger K^+ favors the formation of large silicate oligomers with which AI(OH)4- prefers to bind. Therefore, in Na-K compounding activator solutions more oligomers exist which result in a stronger compressive strength of aluminosilicate-based cementitious materials than in the case of Na-containing activator. The reasons for this were found through IR and NMR analysis. Glauber's salt reduces the 3-day compressive strength of the paste, but increases its 7-day and 28-day compressive strengths. 展开更多
关键词 GANGUE SLAG fly ash aluminosilicate based cementitious materials mechanical properties
下载PDF
Early Carbonation Behavior of High-volume Dolomite Powder-cement Based Materials 被引量:4
8
作者 杨华美 何真 SHAO Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期541-549,共9页
Combined with DTG analysis, X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM) affiliated with energy dispersive spectrometer analysis (EDS), the early hydration and... Combined with DTG analysis, X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM) affiliated with energy dispersive spectrometer analysis (EDS), the early hydration and carbonation behavior of cement paste compacts incorporated with 30% of dolomite powder at low water to cement ratio (0.15) was investigated. The results showed that early carbonation curing was capable of developing rapid early strength. It is noted that the carbonation duration should be strictly controlled otherwise subsequent hydration might be hindered. Dolomite powder acted as nuclei of crystallization, resulting in acceleration of products formation and refinement of products crystal size. Therefore, as for cement-based material, it was found that early carbonation could reduce cement dosages to a large extent and promote rapid strength gain resulting from rapid formation of products, supplemental enhancement due to water release in the reaction of carbonation, and formation ofnanometer CaCO3 skeleton network at early age. 展开更多
关键词 dolomite powder cement based material early carbonation mechanism MICROSTRUCTURE
下载PDF
Effect of Rare Earths on Microstructure and Properties of TiC-based Cermet/Cu Alloy Composite Wear Resistant Materials 被引量:2
9
作者 王新洪 邹增大 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第3期375-379,共5页
The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron... The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron microscope (TEM), impact test and wear test. The mechanism of RE oxide for improving the phase structure and the impact toughness was also discussed. The experimental results indicate that the microstructure of the matrix can be refined, and the micro-porous defects can be eliminated by adding RE oxide into the composite materials. The polycrystalline and amorphous phase structure is formed at the interface of cermet and matrix metal. The formed structure enhances the conjoint strength of interface. The frictional wear resistance can be improved obviously, although the microhardness of the matrix metal can not be effectively increased by adding RE oxide. 展开更多
关键词 metal materials TiC based cermet microstructure mechanical properties wear resistance rare earths
下载PDF
Electrical Conductivity and Corrosion Resistanceof ZnFe _(2)O _(4) Based Materials Used as Inert Anodefor Aluminum Electrolysis 被引量:3
10
作者 YU Xian-jin ZHANG Guang-li +2 位作者 QIU Zhu-xian ZHAO Min-shou SU Qiang 《Advances in Manufacturing》 SCIE CAS 1999年第3期251-254,共4页
ZnFe 2O 4 and ZnFe 2O 4 based materials were tested to obtain the electrical conductivity and corrosion resistance in melting bath for aluminum electrolysis. The results proved that adequate additives, such as Ni 2O 3... ZnFe 2O 4 and ZnFe 2O 4 based materials were tested to obtain the electrical conductivity and corrosion resistance in melting bath for aluminum electrolysis. The results proved that adequate additives, such as Ni 2O 3 CuO, Cu, ZnO and CeO 2 would increase the electrical conductivity, and the ZnFe 2O 4 based anodes with these additives were of good corrosion resistance. The current density on anode, the mole ratio of NaF/AlF 3 (MR) and the content of alumina in the bath effect the anode corrosion rate in different way. 展开更多
关键词 aluminum electrolysis ZnFe _(2)O _(4) based materials inert anode for aluminum electrolysis
下载PDF
High Lattice Match Growth of InAsSb Based Materials by Molecular Beam Epitaxy 被引量:2
11
作者 任洋 郝瑞亭 +4 位作者 刘思佳 郭杰 王国伟 徐应强 牛智川 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期133-137,共5页
High lattice match growth of InAsSb based materials on GaSb substrates is demonstrated. The present results indicate that a stable substrate temperature and the optimal flux ratios are of critical importance in achiev... High lattice match growth of InAsSb based materials on GaSb substrates is demonstrated. The present results indicate that a stable substrate temperature and the optimal flux ratios are of critical importance in achieving a homogeneous InAsSb based material composition throughout the growth period. The quality of these epilayers is assessed using a high-resolution x-ray diffraction and atomic force microscope. The mismatch between the GaSb substrate and InAsSb alloy achieves almost zero, and the rms surface roughness of InAsSb alloy achieves around 1.7A over an area of 28μm × 28μm. At the same time, the mismatches between GaSb and InAs/InAs0.73Sb0.27 superlattices (SLs) achieve approximately 100 arcsec (75 periods) and zero (300 periods), with the surface rms roughnesses of InAs/InAs0.73Sb0.27 SLs around 1.8 A (75 periods) and 2.1A (300 periods) over an area of 20 μm×20 μm, respectively. After fabrication and characterization of the devices, the dynamic resistance of the n-barrier-n InAsSb photodetector near zero bias is of the order of 10^6Ω·cm^2. At 77K, the positive-intrinsic-negative photodetectors are demonstrated in InAsSb and InAs/InAsSb SL (75 periods) materials, exhibiting fifty-percent cutoff wavelengths of 3.8μm and 5.1μm, respectively. 展开更多
关键词 INASSB as is GaSb on in High Lattice Match Growth of InAsSb based materials by Molecular Beam Epitaxy of by
下载PDF
Effects of Surface-activated Coal Gangue Aggregates on Properties of Cement-based Materials 被引量:6
12
作者 YANG Quanbing Lü Miaoxiong LUO Yongbing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1118-1121,共4页
Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experi... Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experimental results show that the compressive and flexural strength of the cement-based material with the calcined CG aggregates is much higher than that of the material with the natural CG aggregates, but the flowability of the material with calcined CG is significantly reduced with the calcined time. The strength of the material with the calcined CG aggregates only increases little with the calcined time at the same w/c ratio, but is reduced with the calcined time at the same flowability. The CG aggregates calcined by the surface thermal activation obviously overcomes the disadvantages of fully calcined CG. 展开更多
关键词 coal gangue AGGREGATE cement-based material STRENGTH FLOWABILITY
下载PDF
Self-healing Action of Permeable Crystalline Coating on Pores and Cracks in Cement-based Materials 被引量:4
13
作者 王桂明 余剑英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第1期89-91,97,共4页
The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable cr... The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids. 展开更多
关键词 cement-based materials SELF-HEALING IMPERMEABILITY CRYSTALLINE
下载PDF
Hydration mechanism of low quality fly ash in cement-based materials 被引量:10
14
作者 刘数华 孔亚宁 王露 《Journal of Central South University》 SCIE EI CAS 2014年第11期4360-4367,共8页
The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration product... The hydration mechanism of low quality fly ash in cement-based materials was investigated. The hydration heat of the composite cementitious materials was determined by isothermal calorimetry, and the hydration products, quantity, pore structure and morphology were measured by X-ray diffraction(XRD), thermalgravity-differential thermal analysis(TG-DTA), mercury intrusion porosimetry(MIP) and scanning electron microscopy(SEM), respectively. The results indicate that grinding could not only improve the physical properties of the low quality fly ash on particle effect, but also improve hydration properties of the cementitious system from various aspects compared with raw low quality fly ash(RLFA). At the early stage of hydration, the low quanlity fly ash acts as almost inert material; but then at the later stage, high chemical activity, especially for ground low quality fly ash(GLFA), could be observed. It can accelerate the formation of hydration products containing more chemical bonded water, resulting in higher degree of cement hydration, thus denser microstructure and more reasonable pore size distribution, but the hydration heat in total is reduced. It can also delay the induction period, but the accelerating period is shortened and there is little influence on the second exothermic peak. 展开更多
关键词 水泥基材料 水化机理 低质量 粉煤灰 复合胶凝材料 扫描电子显微镜 TG-DTA 水化产物
下载PDF
Effects of the Component and Fiber Gradient Distributions on the Strength of Cement-based Composite Materials 被引量:8
15
作者 杨久俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期61-64,共4页
The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied. The results show that the flexural strength and compressive s... The effects of the component gradient distribution at interface and the fiber gradient distribution on the strength of cement-based materials were studied. The results show that the flexural strength and compressive strength of the mortar and concrete with interface component and fiber gradient distributions are obviously improved. The strengthes of the fiber gradient distributed mortar and concrete (FGDM/C) are higher than those of fiber homogeneously distributed mortar and concrete (FHDM/C). To obtain the same strength, therefore, a smaller fiber volume content in FGDM/C is needed than that in FHDM/C. The results also show that the component gradient distribution of the concrete can be obtained by means of multi-layer vibrating formation. 展开更多
关键词 component gradient distribution fiber gradient distribution cement-based functional materials
下载PDF
Design and manufacture of intelligent Cu-based wet friction materials 被引量:2
16
作者 丁华东 韩文政 +2 位作者 傅苏黎 杜建华 遇元宏 《中国有色金属学会会刊:英文版》 CSCD 2004年第5期864-869,共6页
The friction sheets working process was analyzed. It is found that its characteristic is microregion instantaneous high temperature and the current cooling method, making the sheets cooled by the lubricating oil flowi... The friction sheets working process was analyzed. It is found that its characteristic is microregion instantaneous high temperature and the current cooling method, making the sheets cooled by the lubricating oil flowing through the friction surface, is not very efficient. Then, intelligent materials concept was introduced, the component and microstructure of intelligent Cu-based friction materials were designed, and the intelligent Cu-based wet friction materials as well as sheets were manufactured. And the intelligent friction materials working principle, i.e. the materials cooling the friction microregion in real time or the friction sheets cutting the peak value of microregion instantaneous high temperature during friction process, was given depending on the characteristics of the materials’ and friction sheets’ working process. Finally, it is indicated that the intelligent friction sheets excell the currently used friction sheets in properties, including anti-heating property, anti-wearing property as well as friction characteristic. 展开更多
关键词 智能金属 汽车 齿轮箱 摩擦片 铜基合金
下载PDF
Effects of Specimen Shape and Size on Water Loss and Drying Shrinkage of Cement-based Materials 被引量:4
17
作者 巴明芳 钱春香 WANG Hui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期733-740,共8页
The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on w... The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on water loss ratio were consistent with those on drying shrinkage strain. It is also indicated that drying shrinkage strain has obvious linear correlation with water loss ratios independent of specimen size and shape. The effects of specimen size and shape on the water loss ratio were embodied in established model of averaged relative humidity improved by considering effects of sequential hydration and calculated by finite difference method. Furthermore, the effects of specimen size and shape on drying shrinkage strain of concrete were experimentally deduced and applied to modify criterion EB-FIP1990. The comparison between experimental and calculated results shows that the modified EB-FIP1990 can be adopted to predict drying shrinkage strain of concrete with reasonable accuracy. 展开更多
关键词 cement-based materials drying shrinkage water loss effective drying thickness
下载PDF
On the hydro-mechanical behaviour of MX80 bentonite-based materials 被引量:9
18
作者 Yu-Jun Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期183-192,共10页
Bentonite-based materials have been considered in many countries as engineered barrier/backfilling materials in deep geological disposal of high-level radioactive waste.During the long period of waste storage,these ma... Bentonite-based materials have been considered in many countries as engineered barrier/backfilling materials in deep geological disposal of high-level radioactive waste.During the long period of waste storage,these materials will play an essential role in ensuring the integrity of the storage system that consists of the waste canisters,the engineered barrier/backfill,the retaining structures as well as the geological barrier.Thus,it is essential to well understand the hydro-mechanical behaviours of these bentonite-based materials.This review paper presents the recent advances of knowledge on MX80 bentonite-based materials,in terms of water retention properties,hydraulic behaviour and mechanical behaviour.Emphasis is put on the effect of technological voids and the role of the dry density of bentonite.The swelling anisotropy is also discussed based on the results from swelling tests with measurements of both axial and radial swelling pressures on a sand-bentonite mixture compacted at different densities.Microstructure observation was used to help the interpretation of macroscopic hydromechanical behaviour.Also,the evolution of soil microstructure thus the soil density over time is discussed based on the results from mock-up tests.This evolution is essential for understanding the longterm hydro-mechanical behaviour of the engineered barrier/backfill. 展开更多
关键词 Bentonite-based materials Water retention Hydraulic conductivity Mechanical behaviour Microstructure Dry density evolution
下载PDF
A New Method for the Ultra-smooth Machining of the Silicon Based Materials
19
作者 王波 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第S1期244-246,共3页
A New method,named atmospheric pressure plasma polishing,for the ultra-smooth machining of the silicon based materials is introduced.By inputting the CF4 gas into the atmospheric pressure plasma flame,high density rea... A New method,named atmospheric pressure plasma polishing,for the ultra-smooth machining of the silicon based materials is introduced.By inputting the CF4 gas into the atmospheric pressure plasma flame,high density reactive radicals will be generated,which will then react with the silicon based materials.The reaction product is the vaporization of the SiF4,which can be easily processed.In this way,the atomic scale material removal can be realized and the defect free ultra-smooth surface can be obtained.An experimental setup is built up,and the SiC polishing experiment is carried out.The AFM test result shows that the finished surface roughness (Ra) can be improved from 4.529 nm to 0.926 nm in 3 minutes. 展开更多
关键词 atmospheric pressure plasma silicon based materials ULTRA-SMOOTH
下载PDF
Effects of an AMPS-Modified Polyacrylic Acid Superplasticizer on the Performance of Cement-based Materials 被引量:3
20
作者 陈宝璠 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期109-116,共8页
A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect o... A self-made AMPS-modified polyacrylic acid superplasticizer and two others of the same type but with different molecular structures, which are commercially available, are used in this study to investigate the effect of a 2-acrylamide-2-methyl propylene sulfonic (AMPS)-modified polyacrylic acid superplasticizer on the properties of cement-based materials. In the experiments, initial fluidity, 1 and 2 h fluidity over time after admixtion, bleeding rate of the net cement mortar, and adsorption capacity and rate of cement particles are determined by adding different dosages of the three superplasticizers into the cement paste to characterize the dispersivity and the dispersion retention capability of each superplasticizer. Water-reducing rates of three kinds of mortars are simultaneously determined to characterize the water-reducing capacity of each superplasticizer, as well as the 3 and 28 d compressive strengths to characterize the compression resistance. Results show that water-reducing effect and fluidity better maintain the capability of the AMPS-modified polyacrylic acid superplasticizer than the two commercially available polyacrylic acid superplasticizers, and the compressive strengths after 3 and 28 d show significant growth. In conclusion, the effects of water reduction and strengthening of the AMPS-modified polyacrylic acid superplasticizer are evidently better than those of the two commercially available polyacrylic acid superplasticizers. 展开更多
关键词 AMPS-modified polyacrylic acid superplasticizer cement-based materials polyacrylic acid superplasticizer PERFORMANCE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部