Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurologic...Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide.Epilepsies are trigge red by an imbalance between excitatory and inhibitory conductances.However,pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function va riants,all able to trigger epilepsy.Furthermore,certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype.This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought.Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox.The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes,including neuronal migration,neurite outgrowth,and synapse formation.Thus,pathogenic channel mutants can not only cause epileptic disorders by alte ring excitability,but further,by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.展开更多
Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomoti...Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomotion in the cerebral basilar artery (BA) of Wistar rats. Pressure myograph video microscopy was used to study the changes in cerebral artery vessel diameter. The main results of this study were as follows: (1) The diameters of BA and middle cerebral artery (MCA) were 314.5±15.7 μm (n=15) and 233.3±10.1 μm (n=12) at 10 mmHg working pressure (P〈0.05), respectively. Pressure-induced vasomotion occurred in BA (22/28, 78.6%), but not in MCA (4/31, 12.9%) from 0 to 70 mmHg working pressure. As is typical for vasomotion, the contractile phase of the response was more rapid than the relaxation phase; (2) The frequency of vasomotion response and the diameter were gradually increased in BA from 0 to 70 mmHg working pressure. The amplitude of the rhythmic con- tractions was relatively constant once stable conditions were achieved. The frequency of contractions was variable and the highest value was 16.7±4.7 (n=13) per 10 min at 60 mmHg working pressure; (3) The pressure-induced vasomotion of the isolated BA was attenuated by nifedipine, NFA, 181]-GA, TEA or in Ca2+-free medium. Nifedipine, NFA, 18^-GA or Ca2+-free medium not only dampened vasomotion, but also kept BA in relaxation state. In contrasts, TEA kept BA in contraction state. These results sug- gest that the pressure-induced vasomotion of the isolated BA results from an interaction between Ca2+-activated C1- channels (CaCCs) currents and Kca currents. We hypothesize that vasomotion of BA depends on the depolarizing of the vascular smooth muscle cells (VSMCs) to activate CaCCs. Depolarization in turn activates voltage-dependent Ca2+ channels, synchronizing contractions of adjacent cells through influx of extracellular calcium and the flow of calcium through gap junctions. Subsequent calcium-induced calcium release from ryanodine-sensitive stores activates Kca channels and hyperpo- larizes VSMCs, which provides a negative feedback loop for regenerating the contractile cycle.展开更多
A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulati...A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA- inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPl), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.展开更多
The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect th...The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.展开更多
Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell prolife...Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of hergl gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of hergl gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1(P 〈 0.05) and the number of apoptotic tumor cells(P 〈 0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.展开更多
TWIK-related acid-sensitive K+(TASK) channels give rise to leak K+ currents which influence the resting membrane potential and input resistance. The wide expression of TASK1 and TASK3 channels in the central nervous s...TWIK-related acid-sensitive K+(TASK) channels give rise to leak K+ currents which influence the resting membrane potential and input resistance. The wide expression of TASK1 and TASK3 channels in the central nervous system suggests that these channels are critically involved in neurological disorders. It has become apparent in the past decade that TASK channels play critical roles for the development of various neurological disorders. In this review, I describe evidence for their roles in ischemia, epilepsy, learning/memory/cognition and apoptosis.展开更多
In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. ...In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cy- tometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytoge- netic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by induc- ing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells prolif- eration and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.展开更多
In order to investigate the K+ channels and their effects on resting membrane potential (Em) and excitability in rat bronchial smooth muscle cells (BSMCs), the components of outward K+ channel currents and the effects...In order to investigate the K+ channels and their effects on resting membrane potential (Em) and excitability in rat bronchial smooth muscle cells (BSMCs), the components of outward K+ channel currents and the effects of K+ channels on Em and tension in rat bronchial smooth muscle were observed by using standard whole-cell recording of patch clamp and isometric tension recording techniques. The results showed that under resting conditions, total outward K+ channel currents in freshly isolated BSMCs were unaffected by ATP-sensitive K+ channel blocker. There were two types of K+ currents: voltage-dependent delayed rectifier K+ channel (Kv) and large conductance calcium-activated K+ channel (BKc.) currents. 1 mmol/L 4-aminopyridine (4-AP, an inhibitor of Kv) caused a significant depolarization (from -8. 7±5. 9 mV to -25. 4±3. 1 mV, n=18, P<0. 001). In contrast, 1 mmol/L tetraethylammonium (TEA, an inhibitor of BKc.) had no significant effect on Em (from -37. 6±4. 8 mV to -36. 8±4.1mV, n=12, P>0. 05). 4-AP caused a concentration-dependent contraction in resting bronchial strips. TEA had no effect on resting tension, but application of 5 mmol/L TEA resulted in a left shift with bigger pD2(the negative logarithm of the drug concentration causing 50% of maximal effect) (from 6. 27±0. 38 to 6. 89±0. 54, n= 10, P<0. 05) in the concentration-effect curve of endothine-1, and a right shift with smaller pD2(from 8. 10±0. 23 to 7. 69±0. 08, n=10, P<0. 05) in the concentration-effect curve of isoprenaline. It was suggested that in rat BSMCs there may be two types of K+ channels, Kv and BKca, which serve distinct roles. Kv participates in the control of resting Em and tension. BKca is involved in the regulation of relaxation or contraction associated with excitation.展开更多
Major depressive disorder(MDD)is a common neuropsychiatric disorder characterized by diverse symptoms.There are big limitations of clinic medicine which highlighted an urgent and clear need for more efficacious and fa...Major depressive disorder(MDD)is a common neuropsychiatric disorder characterized by diverse symptoms.There are big limitations of clinic medicine which highlighted an urgent and clear need for more efficacious and faster-acting therapeutic agents to treat patients with MDD,especially those who are refractory to the traditional antidepressants.In the present study,we assessed a novel compound,YY-21,from timosaponin B-Ⅲ derived from sarsasapogenin of Anemarrhenae Rhizoma.We found that YY-21 obviously increased presynaptic glutamate release and enhanced long-term synaptic activity within 10 min as determined by excitatory postsynaptic current(EPSC) and field excitatory postsynaptic potential(fEPSP) in medial prefrontal cortex(mPFC) slices.YY-21 demonstrated anxiolytic-like effects following acute administration in animals and reversed the depressivelike and anxiety phenotypes induced by chronic unpredictable mild stress(CMS) with a relatively fast therapeutic onset.Our mechanism research reveals that NMDA receptors and two-pore domain potassium(K2P)(TREK1) channels emerged as new drug targets for faster acting antidepressants.K2 P channels generate leak currents that are responsible the maintenance of resting membrane potential.They are potential targets for the treatment of multiple diseases.Here we identify TKDC,an inhibitor of the TREK subfamily,including TREK1,TREK2 and TRAAK channels.Using TKDC as a chemical probe,a combined study of computations,mutagenesis,and electrophysiology reveal an allosteric ligand-binding site in the extracellular cap of the channels.The molecular dynamics simulations suggest that ligand-induced allosteric conformational transitions cause a blockage of the ion conductive pathway.The identification of the extracellular ligand-binding site is confirmed by the discovery of new inhibitors targeting this site using virtual screening.These results suggest that the extracellular cap of a K2P channel can act as a new allosteric site and may serve as a direct drug target.展开更多
Objective: To study the effect of isoflurane and ethanol on large conductance Ca 2+-activated K + channels(BK channels). Methods: The cRNA of mslo1 encoding BK channels was injected into Xenopus oocytes. Oocytes were ...Objective: To study the effect of isoflurane and ethanol on large conductance Ca 2+-activated K + channels(BK channels). Methods: The cRNA of mslo1 encoding BK channels was injected into Xenopus oocytes. Oocytes were incubated in ND96 (96 mmol/L NaCl, 2.0 mmol/L KCl, 1.8 mmol/L CaCl 2, 1.0 mmol/L MgCl 2, and 5.0 mmol/L HEPES, pH 7.4) at 4 ℃. Patch clamp recording (outside-out) were performed after 2-3 d. Isoflurane was administrated by the vaporizer driven by air, ethanol was applied by a closed, manual-controlled administration system. Different test potentials from 0 to 10 mV were given to observe changes of currents. Results: 0.7 mmol/L and 1.2 mmol/L of isoflurane could inhibit BK currents obviously at different command potentials, but 50 mmol/L, 100 mmol/L, or 200 mmol/L of ethanol had no any effect on BK currents. Conclusion: Clinical concentration of isoflurane can distinctly inhibit isolating BK currents.展开更多
In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) ...In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) since the mutation can influence sodium channel functions. However it is still unclear if the E1784K mutation-induced sodium ionic channel alterations account for the overlap at tissue level. Thsu, a detailed computational model is developed to underpin the functional impacts of the E1784K mutation on the action potential (AP), the effective refractory period (ERP) and the abnormal ECG. Simulation results stlggest'that the E1784K mutation-induced sodium channel alterations are insufficient to produce the phenotypic overlap between LQT3 and BrS, and the overlap may arise from the complicated effects of the E1784K mutation-induced changes in sodium channel currents with an increase of the transient outward current ITo or a decrease of the L-type calcium current ICaL .展开更多
AIM: To investigate the effects of exogenous unsaturated fatty acids on calcium-activated potassium current [IK(Ca)] in gastric antral circular myocytes of guinea pigs. METHODS: Gastric myocytes were isolated by colla...AIM: To investigate the effects of exogenous unsaturated fatty acids on calcium-activated potassium current [IK(Ca)] in gastric antral circular myocytes of guinea pigs. METHODS: Gastric myocytes were isolated by collagenase from the antral circular layer of guinea pig stomach. The whole-cell patch clamp technique was used to record /K(Ca) in the isolated single smooth muscle cells with or without different concentrations of arachidonic acid (AA), linoleic acid (LA), and oleic acid (OA). RESULTS: AA at concentrations of 2,5 and 10 μmol/L markedly increased IK(Ca) in a dose-dependent manner. LA at concentrations of 5, 10 and 20 μmol/L also enhanced /K(Ca) in a dose-dependent manner. The increasing potency of AA, LA, and oleic acid (OA) on /K(Ca)at the same concentration (10μmol/L) was in the order of AA>LA>OA. AA (10 μmol/L)-induced increase of Ik(ca) was not blocked by H-7 (10 μmol/L), an inhibitor of protein kinase C (PKC), or indomethacin (10 μmol/L), an inhibitor of the cyclooxygenase pathway, and 17-octadecynoic acid (10 μmol/L), an inhibitor of the cytochrome P450 pathway, but weakened by nordihydroguaiaretic acid (10μmol/L), an inhibitor of the lipoxygenase pathway. CONCLUSION: Unsaturated fatty acids markedly increase Ik(Ca), and the enhancing potencies are related to the number of double bonds in the fatty acid chain. The lipoxygenase pathway of unsaturated fatty acid metabolism is involved in the unsaturated fatty acid-induced increase of IK(Ca) in gastric antral circular myocytes of guinea pigs.展开更多
The effects of ATP-sensitive mitochondrial K + channel(mitoK ATP) on mitochondrial membrane potential(Δψm),cell proliferation and protein kinase C alpha(PKCα) expression in airway smooth muscle cells(ASMCs) were in...The effects of ATP-sensitive mitochondrial K + channel(mitoK ATP) on mitochondrial membrane potential(Δψm),cell proliferation and protein kinase C alpha(PKCα) expression in airway smooth muscle cells(ASMCs) were investigated.Thirty-six Sprague-Dawley(SD) rats were immunized with saline(controls) or ovalbumin(OVA) with alum(asthma models).ASMCs were cultured from the lung of control and asthma rats.ASMCs were treated with diazoxide(the potent activator of mitoK ATP) or 5-hydroxydencanote(5-HD,the inhibitor of mitoK ATP).Rhodamine-123(R-123) was used to detect Δψm.The expression of PKCα protein was examined by using Western blotting,while PKCα mRNA expression was detected by using real-time PCR.The proliferation of ASMCs was measured by MTT assay and cell cycle analysis.In diazoxide-treated normal ASMCs,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and percentage of cells in S phase were markedly increased as compared with untreated controls.The ratio of G 0 /G 1 cells was decreased(P<0.05) in diazoxide-treated ASMCs from normal rats.However,there were no significant differences between the ASMCs from healthy rats treated with 5-HD and the normal control group.In untreated and diazoxide-treated ASMCs of asthmatic rats,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and the percentage of cells in S phase were increased in comparison to the normal control group.Furthermore,in comparison to ASMCs from asthmatic rats,these values were considerably increased in asthmatic group treated with diazoxide(P<0.05).After exposure to 5-HD for 24 h,these values were decreased as compared with asthma control group(P<0.05).In ASMCs of asthma,the signal transduction pathway of PKCα may be involved in cell proliferation,which is induced by the opening of mitoK ATP and the depolarization of Δψm.展开更多
AIM:To assess the effect of nitric oxide (NO) on the large conductance potassium channel (BKCa) in isolated circular (CM) and sling (SM) muscle cells and muscle strips from the cat lower esophageal sphincter (LES) to ...AIM:To assess the effect of nitric oxide (NO) on the large conductance potassium channel (BKCa) in isolated circular (CM) and sling (SM) muscle cells and muscle strips from the cat lower esophageal sphincter (LES) to determine its regulation of resting tone and relaxation.METHODS:Freshly enzymatically-digested and isolated circular smooth muscle cells were prepared from each LES region.To study outward K + currents,the perforated patch clamp technique was employed.To assess LES resting tone and relaxation,muscle strips were mounted in perfused organ baths.RESULTS:(1) Electrophysiological recordings from isolated cells:(a) CM was more depolarized than SM (-39.7 ± 0.8mV vs-48.1 ± 1.6 mV,P < 0.001),and maximal outward current was similar (27.1 ± 1.5 pA/pF vs 25.7 ± 2.0 pA/pF,P > 0.05);(b) The NO donor sodium nitroprusside (SNP) increased outward currents only in CM (25.9 ± 1.9 to 46.7 ± 4.2 pA/pF,P < 0.001) but not SM (23.2 ± 3.1 to 27.0 ± 3.4 pA/pF,P > 0.05);(c) SNP added in the presence of the BK Ca antagonist iberiotoxin (IbTX) produced no increase in the outward current in CM (17.0 ± 2.8 vs 13.7 ± 2.2,P > 0.05);and (d) L-NNA caused a small insignificant inhibition of outward K + currents in both muscles;and (2) Muscle strip studies:(a) Blockade of the nerves with tetrodotoxin (TTX),or BK Ca with IbTX had no significant effect on resting tone of either muscle;and (b) SNP reduced tone in both muscles,and was unaffected by the presence of TTX or IbTX.CONCLUSION:Exogenous NO activates BK Ca only in CM of the cat.However,as opposed to other species,exogenous NO-induced relaxation is predominantly by a non-BK Ca mechanism,and endogenous NO has minimal effect on resting tone.展开更多
In this study, we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (PDE-5) inhibitors on the muscular tone of the corpus cavernosum and potassium channel activ...In this study, we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (PDE-5) inhibitors on the muscular tone of the corpus cavernosum and potassium channel activity of corporal smooth muscle cells. Strips of corpus cavernosum from male New Zealand white rabbits were mounted in organ baths for isometric tension studies. After contraction with 1 × 10^-5 mol I^-1 norepinephrine, GBE (0.01-1 mg ml^-1) and mirodenafil (0.01-100 nmol I^-1) were added together into the organ bath. In electrophysiological studies, whole-cell currents were recorded by the conventional patch-clamp technique in cultured smooth muscle cells of the human corpus cavernosum. The corpus cavemosum was relaxed in response to GBE in a dose-dependent manner (from 0.64%±8.35% at 0.01 mg ml^-1 to 52.28%±11.42% at 1 mg ml^-1). After pre-treatment with 0.03 mg ml^-1 of GBE, the relaxant effects of mirodenafil were increased at all concentrations, After tetraethylammonium (TEA) (1 mmol I^-1) administration, the increased effects were inhibited (P〈0.01). Extracellular administration of GBE increased the whole-cell K^+ outward currents in a dose-dependent fashion. The increase of the outward current was inhibited by I mmol 1-1 TEA. These results suggest that GBE could increase the relaxant potency of mirodenafil even at a minimally effective dose. The K+ flow through potassium channels might be one of the mechanisms involved in this synergistic relaxation.展开更多
基金NJ Governor’s Council for Medical Research and Treatment of Autism predoctoral fellowship (CAUT23AFP015) to ABNational Science Foundation grant (2030348) to FS。
文摘Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes.Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide.Epilepsies are trigge red by an imbalance between excitatory and inhibitory conductances.However,pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function va riants,all able to trigger epilepsy.Furthermore,certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype.This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought.Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox.The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes,including neuronal migration,neurite outgrowth,and synapse formation.Thus,pathogenic channel mutants can not only cause epileptic disorders by alte ring excitability,but further,by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.
基金supported by grants from National Basic Research Program of China(No.2012CB52660000)National Natural Science Foundation of China(No.81000411,No.31100829,and No.31260247)
文摘Spontaneous, rhythmical contractions, or vasomotion, can be recorded from cerebral vessels under both normal physiological and pathophysiological conditions. We investigated the cellular mechanisms underlying vasomotion in the cerebral basilar artery (BA) of Wistar rats. Pressure myograph video microscopy was used to study the changes in cerebral artery vessel diameter. The main results of this study were as follows: (1) The diameters of BA and middle cerebral artery (MCA) were 314.5±15.7 μm (n=15) and 233.3±10.1 μm (n=12) at 10 mmHg working pressure (P〈0.05), respectively. Pressure-induced vasomotion occurred in BA (22/28, 78.6%), but not in MCA (4/31, 12.9%) from 0 to 70 mmHg working pressure. As is typical for vasomotion, the contractile phase of the response was more rapid than the relaxation phase; (2) The frequency of vasomotion response and the diameter were gradually increased in BA from 0 to 70 mmHg working pressure. The amplitude of the rhythmic con- tractions was relatively constant once stable conditions were achieved. The frequency of contractions was variable and the highest value was 16.7±4.7 (n=13) per 10 min at 60 mmHg working pressure; (3) The pressure-induced vasomotion of the isolated BA was attenuated by nifedipine, NFA, 181]-GA, TEA or in Ca2+-free medium. Nifedipine, NFA, 18^-GA or Ca2+-free medium not only dampened vasomotion, but also kept BA in relaxation state. In contrasts, TEA kept BA in contraction state. These results sug- gest that the pressure-induced vasomotion of the isolated BA results from an interaction between Ca2+-activated C1- channels (CaCCs) currents and Kca currents. We hypothesize that vasomotion of BA depends on the depolarizing of the vascular smooth muscle cells (VSMCs) to activate CaCCs. Depolarization in turn activates voltage-dependent Ca2+ channels, synchronizing contractions of adjacent cells through influx of extracellular calcium and the flow of calcium through gap junctions. Subsequent calcium-induced calcium release from ryanodine-sensitive stores activates Kca channels and hyperpo- larizes VSMCs, which provides a negative feedback loop for regenerating the contractile cycle.
基金National Natura1 Science Foundation of China (No. 39870372),StateKey Basic Research and Development Project (No.G1999011700)
文摘A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA- inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPl), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.
基金supported by grants from the National Natural Science Foundation of China (No. 81072001)the Natural Science Foundation of Hubei Province, China (No.2011CDB556)
文摘The roles of intermediate conductance Ca2+-activated K+ channel (IKCal) in the pathogene- sis of hepatocellular carcinoma (HCC) were investigated. Immunohistochemistry and Western blotting were used to detect the expression of IKCal protein in 50 HCC and 20 para-carcinoma tissue samples. Real-time PCR was used to detect the transcription level of IKCal mRNA in 13 HCC and 11 para-carcinoma tissue samples. The MTT assay was used to measure the function of IKCal in human HCC cell line HepG2 in vitro. TRAM-34, a specific blocker of IKCal, was used to intervene with the function of IKCal. As compared with para-carcinoma tissue, an over-expression of IKCal protein was detected in HCC tissue samples (P〈0.05). The mRNA expression level of IKCal in HCC tissues was 2.17 times higher than that in para-carcinoma tissues. The proliferation of HepG2 cells was suppressed by TRAM-34 (0.5, 1.0, 2.0 and 4.0 pxnol/L) in vitro (P〈0.05). Our results suggested that IKCal may play a role in the proliferation of human HCC, and IKCal blockers may represent a potential therapeutic strategy for HCC.
基金supported by a grant from the Natural Science Foundation of China(30772128)
文摘Objective: To investigate the expression of hergl gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of hergl gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of hergl gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1(P 〈 0.05) and the number of apoptotic tumor cells(P 〈 0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.
文摘TWIK-related acid-sensitive K+(TASK) channels give rise to leak K+ currents which influence the resting membrane potential and input resistance. The wide expression of TASK1 and TASK3 channels in the central nervous system suggests that these channels are critically involved in neurological disorders. It has become apparent in the past decade that TASK channels play critical roles for the development of various neurological disorders. In this review, I describe evidence for their roles in ischemia, epilepsy, learning/memory/cognition and apoptosis.
基金a grant from National Science Foundation for Distinguished Young Scholars of China (No. 30225038)
文摘In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cy- tometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytoge- netic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by induc- ing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells prolif- eration and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.
基金This project was supported by a grant from the National Natural Sciences Foundation of China(No.30270583).
文摘In order to investigate the K+ channels and their effects on resting membrane potential (Em) and excitability in rat bronchial smooth muscle cells (BSMCs), the components of outward K+ channel currents and the effects of K+ channels on Em and tension in rat bronchial smooth muscle were observed by using standard whole-cell recording of patch clamp and isometric tension recording techniques. The results showed that under resting conditions, total outward K+ channel currents in freshly isolated BSMCs were unaffected by ATP-sensitive K+ channel blocker. There were two types of K+ currents: voltage-dependent delayed rectifier K+ channel (Kv) and large conductance calcium-activated K+ channel (BKc.) currents. 1 mmol/L 4-aminopyridine (4-AP, an inhibitor of Kv) caused a significant depolarization (from -8. 7±5. 9 mV to -25. 4±3. 1 mV, n=18, P<0. 001). In contrast, 1 mmol/L tetraethylammonium (TEA, an inhibitor of BKc.) had no significant effect on Em (from -37. 6±4. 8 mV to -36. 8±4.1mV, n=12, P>0. 05). 4-AP caused a concentration-dependent contraction in resting bronchial strips. TEA had no effect on resting tension, but application of 5 mmol/L TEA resulted in a left shift with bigger pD2(the negative logarithm of the drug concentration causing 50% of maximal effect) (from 6. 27±0. 38 to 6. 89±0. 54, n= 10, P<0. 05) in the concentration-effect curve of endothine-1, and a right shift with smaller pD2(from 8. 10±0. 23 to 7. 69±0. 08, n=10, P<0. 05) in the concentration-effect curve of isoprenaline. It was suggested that in rat BSMCs there may be two types of K+ channels, Kv and BKca, which serve distinct roles. Kv participates in the control of resting Em and tension. BKca is involved in the regulation of relaxation or contraction associated with excitation.
文摘Major depressive disorder(MDD)is a common neuropsychiatric disorder characterized by diverse symptoms.There are big limitations of clinic medicine which highlighted an urgent and clear need for more efficacious and faster-acting therapeutic agents to treat patients with MDD,especially those who are refractory to the traditional antidepressants.In the present study,we assessed a novel compound,YY-21,from timosaponin B-Ⅲ derived from sarsasapogenin of Anemarrhenae Rhizoma.We found that YY-21 obviously increased presynaptic glutamate release and enhanced long-term synaptic activity within 10 min as determined by excitatory postsynaptic current(EPSC) and field excitatory postsynaptic potential(fEPSP) in medial prefrontal cortex(mPFC) slices.YY-21 demonstrated anxiolytic-like effects following acute administration in animals and reversed the depressivelike and anxiety phenotypes induced by chronic unpredictable mild stress(CMS) with a relatively fast therapeutic onset.Our mechanism research reveals that NMDA receptors and two-pore domain potassium(K2P)(TREK1) channels emerged as new drug targets for faster acting antidepressants.K2 P channels generate leak currents that are responsible the maintenance of resting membrane potential.They are potential targets for the treatment of multiple diseases.Here we identify TKDC,an inhibitor of the TREK subfamily,including TREK1,TREK2 and TRAAK channels.Using TKDC as a chemical probe,a combined study of computations,mutagenesis,and electrophysiology reveal an allosteric ligand-binding site in the extracellular cap of the channels.The molecular dynamics simulations suggest that ligand-induced allosteric conformational transitions cause a blockage of the ion conductive pathway.The identification of the extracellular ligand-binding site is confirmed by the discovery of new inhibitors targeting this site using virtual screening.These results suggest that the extracellular cap of a K2P channel can act as a new allosteric site and may serve as a direct drug target.
文摘Objective: To study the effect of isoflurane and ethanol on large conductance Ca 2+-activated K + channels(BK channels). Methods: The cRNA of mslo1 encoding BK channels was injected into Xenopus oocytes. Oocytes were incubated in ND96 (96 mmol/L NaCl, 2.0 mmol/L KCl, 1.8 mmol/L CaCl 2, 1.0 mmol/L MgCl 2, and 5.0 mmol/L HEPES, pH 7.4) at 4 ℃. Patch clamp recording (outside-out) were performed after 2-3 d. Isoflurane was administrated by the vaporizer driven by air, ethanol was applied by a closed, manual-controlled administration system. Different test potentials from 0 to 10 mV were given to observe changes of currents. Results: 0.7 mmol/L and 1.2 mmol/L of isoflurane could inhibit BK currents obviously at different command potentials, but 50 mmol/L, 100 mmol/L, or 200 mmol/L of ethanol had no any effect on BK currents. Conclusion: Clinical concentration of isoflurane can distinctly inhibit isolating BK currents.
基金Supported by the National Natural Science Foundation of China(61001167,61172149)~~
文摘In the clinical reports, the E1784K mutation in SCN5A is recognized as a phenotypic overlap between the long QT syndrome (LQT3) and the Brugada syndrome (BrS) in the characteristics of electrocardiograms (ECGs) since the mutation can influence sodium channel functions. However it is still unclear if the E1784K mutation-induced sodium ionic channel alterations account for the overlap at tissue level. Thsu, a detailed computational model is developed to underpin the functional impacts of the E1784K mutation on the action potential (AP), the effective refractory period (ERP) and the abnormal ECG. Simulation results stlggest'that the E1784K mutation-induced sodium channel alterations are insufficient to produce the phenotypic overlap between LQT3 and BrS, and the overlap may arise from the complicated effects of the E1784K mutation-induced changes in sodium channel currents with an increase of the transient outward current ITo or a decrease of the L-type calcium current ICaL .
基金Supported by the National Natural Science Foundation of China, No.30160028
文摘AIM: To investigate the effects of exogenous unsaturated fatty acids on calcium-activated potassium current [IK(Ca)] in gastric antral circular myocytes of guinea pigs. METHODS: Gastric myocytes were isolated by collagenase from the antral circular layer of guinea pig stomach. The whole-cell patch clamp technique was used to record /K(Ca) in the isolated single smooth muscle cells with or without different concentrations of arachidonic acid (AA), linoleic acid (LA), and oleic acid (OA). RESULTS: AA at concentrations of 2,5 and 10 μmol/L markedly increased IK(Ca) in a dose-dependent manner. LA at concentrations of 5, 10 and 20 μmol/L also enhanced /K(Ca) in a dose-dependent manner. The increasing potency of AA, LA, and oleic acid (OA) on /K(Ca)at the same concentration (10μmol/L) was in the order of AA>LA>OA. AA (10 μmol/L)-induced increase of Ik(ca) was not blocked by H-7 (10 μmol/L), an inhibitor of protein kinase C (PKC), or indomethacin (10 μmol/L), an inhibitor of the cyclooxygenase pathway, and 17-octadecynoic acid (10 μmol/L), an inhibitor of the cytochrome P450 pathway, but weakened by nordihydroguaiaretic acid (10μmol/L), an inhibitor of the lipoxygenase pathway. CONCLUSION: Unsaturated fatty acids markedly increase Ik(Ca), and the enhancing potencies are related to the number of double bonds in the fatty acid chain. The lipoxygenase pathway of unsaturated fatty acid metabolism is involved in the unsaturated fatty acid-induced increase of IK(Ca) in gastric antral circular myocytes of guinea pigs.
基金supported by grants from Natural Science Foundation of Hubei Province,China (No. 2010CDB096)the National Key Technology R&D Program of the 12th National Five-year Development Plan of China (No. 2012BAI05B01)
文摘The effects of ATP-sensitive mitochondrial K + channel(mitoK ATP) on mitochondrial membrane potential(Δψm),cell proliferation and protein kinase C alpha(PKCα) expression in airway smooth muscle cells(ASMCs) were investigated.Thirty-six Sprague-Dawley(SD) rats were immunized with saline(controls) or ovalbumin(OVA) with alum(asthma models).ASMCs were cultured from the lung of control and asthma rats.ASMCs were treated with diazoxide(the potent activator of mitoK ATP) or 5-hydroxydencanote(5-HD,the inhibitor of mitoK ATP).Rhodamine-123(R-123) was used to detect Δψm.The expression of PKCα protein was examined by using Western blotting,while PKCα mRNA expression was detected by using real-time PCR.The proliferation of ASMCs was measured by MTT assay and cell cycle analysis.In diazoxide-treated normal ASMCs,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and percentage of cells in S phase were markedly increased as compared with untreated controls.The ratio of G 0 /G 1 cells was decreased(P<0.05) in diazoxide-treated ASMCs from normal rats.However,there were no significant differences between the ASMCs from healthy rats treated with 5-HD and the normal control group.In untreated and diazoxide-treated ASMCs of asthmatic rats,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and the percentage of cells in S phase were increased in comparison to the normal control group.Furthermore,in comparison to ASMCs from asthmatic rats,these values were considerably increased in asthmatic group treated with diazoxide(P<0.05).After exposure to 5-HD for 24 h,these values were decreased as compared with asthma control group(P<0.05).In ASMCs of asthma,the signal transduction pathway of PKCα may be involved in cell proliferation,which is induced by the opening of mitoK ATP and the depolarization of Δψm.
基金Supported by A Postgraduate Fellowship Award to L'Heureux MC from the Department of Medicine,University of Torontoa doctoral research studentship and an Operating Grant from the Canadian Institutes of Health Research(Gaisano HY and Diamant NE)
文摘AIM:To assess the effect of nitric oxide (NO) on the large conductance potassium channel (BKCa) in isolated circular (CM) and sling (SM) muscle cells and muscle strips from the cat lower esophageal sphincter (LES) to determine its regulation of resting tone and relaxation.METHODS:Freshly enzymatically-digested and isolated circular smooth muscle cells were prepared from each LES region.To study outward K + currents,the perforated patch clamp technique was employed.To assess LES resting tone and relaxation,muscle strips were mounted in perfused organ baths.RESULTS:(1) Electrophysiological recordings from isolated cells:(a) CM was more depolarized than SM (-39.7 ± 0.8mV vs-48.1 ± 1.6 mV,P < 0.001),and maximal outward current was similar (27.1 ± 1.5 pA/pF vs 25.7 ± 2.0 pA/pF,P > 0.05);(b) The NO donor sodium nitroprusside (SNP) increased outward currents only in CM (25.9 ± 1.9 to 46.7 ± 4.2 pA/pF,P < 0.001) but not SM (23.2 ± 3.1 to 27.0 ± 3.4 pA/pF,P > 0.05);(c) SNP added in the presence of the BK Ca antagonist iberiotoxin (IbTX) produced no increase in the outward current in CM (17.0 ± 2.8 vs 13.7 ± 2.2,P > 0.05);and (d) L-NNA caused a small insignificant inhibition of outward K + currents in both muscles;and (2) Muscle strip studies:(a) Blockade of the nerves with tetrodotoxin (TTX),or BK Ca with IbTX had no significant effect on resting tone of either muscle;and (b) SNP reduced tone in both muscles,and was unaffected by the presence of TTX or IbTX.CONCLUSION:Exogenous NO activates BK Ca only in CM of the cat.However,as opposed to other species,exogenous NO-induced relaxation is predominantly by a non-BK Ca mechanism,and endogenous NO has minimal effect on resting tone.
文摘In this study, we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (PDE-5) inhibitors on the muscular tone of the corpus cavernosum and potassium channel activity of corporal smooth muscle cells. Strips of corpus cavernosum from male New Zealand white rabbits were mounted in organ baths for isometric tension studies. After contraction with 1 × 10^-5 mol I^-1 norepinephrine, GBE (0.01-1 mg ml^-1) and mirodenafil (0.01-100 nmol I^-1) were added together into the organ bath. In electrophysiological studies, whole-cell currents were recorded by the conventional patch-clamp technique in cultured smooth muscle cells of the human corpus cavernosum. The corpus cavemosum was relaxed in response to GBE in a dose-dependent manner (from 0.64%±8.35% at 0.01 mg ml^-1 to 52.28%±11.42% at 1 mg ml^-1). After pre-treatment with 0.03 mg ml^-1 of GBE, the relaxant effects of mirodenafil were increased at all concentrations, After tetraethylammonium (TEA) (1 mmol I^-1) administration, the increased effects were inhibited (P〈0.01). Extracellular administration of GBE increased the whole-cell K^+ outward currents in a dose-dependent fashion. The increase of the outward current was inhibited by I mmol 1-1 TEA. These results suggest that GBE could increase the relaxant potency of mirodenafil even at a minimally effective dose. The K+ flow through potassium channels might be one of the mechanisms involved in this synergistic relaxation.