期刊文献+
共找到3,661篇文章
< 1 2 184 >
每页显示 20 50 100
A defective iron-based perovskite cathode for high-performance IT-SOFCs:Tailoring the oxygen vacancies using Nb/Ta co-doping 被引量:2
1
作者 Bayu Admasu Beshiwork Xinyu Wan +6 位作者 Min Xu Haoran Guo Birkneh Sirak Teketel Yu Chen Jun Song Chen Tingshuai Li Enrico Traversa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期306-316,I0008,共12页
The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable ... The sluggish kinetics of the electrochemical oxygen reduction reaction(ORR)in intermediatetemperature solid oxide fuel cells(IT-SOFCs)greatly limits the overall cell performance.In this study,an efficient and durable cathode material for IT-SOFCs is designed based on density functional theory(DFT)calculations by co-doping with Nb and Ta the B-site of the SrFeO_(3-δ)perovskite oxide.The DFT calculations suggest that Nb/Ta co-doping can regulate the energy band of the parent SrFeO_(3-δ)and help electron transfer.In symmetrical cells,such cathode with a SrFe_(0.8)Nb_(0.1)Ta_(0.1)O_(3-δ)(SFNT)detailed formula achieves a low cathode polarization resistance of 0.147Ωcm^(2) at 650℃.Electron spin resonance(ESR)and X-ray photoelectron spectroscopy(XPS)analysis confirm that the co-doping of Nb/Ta in SrFeO_(3-δ)B-site increases the balanced concentration of oxygen vacancies,enhancing the electrochemical performance when compared to 20 mol%Nb single-doped perovskite oxide.The cathode button cell with NiSDC|SDC|SFNT configuration achieves an outstanding peak power density of 1.3 W cm^(-2)at 650℃.Moreover,the button cell shows durability for 110 h under 0.65 V at 600℃ using wet H_(2) as fuel. 展开更多
关键词 Solid oxide fuel cell CATHODE Oxygen reduction reaction Power density DFT calculation
下载PDF
Active MoS_(2)-based electrode for green ammonia synthesis 被引量:1
2
作者 Xin Liu Lei Yang +2 位作者 Tao Wei Shanping Liu Beibei Xiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期268-275,共8页
Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology i... Nitrogen electro-reduction under mild conditions is one promising alternative approach of the energyconsuming Haber-Bosch process for the artificial ammonia synthesis.One critical aspect to unlocking this technology is to discover the catalysts with high selectivity and efficiency.In this work,the N_(2)-to-NH_(3)conversion on the functional MoS_(2)is fully investigated by density functional theory calculations since the layered MoS_(2)provides the ideal platform for the elaborating copies of the nitrogenase found in nature,wherein the functionalization is achieved via basal-adsorption,basal-substitution or edge-substitution of transition metal elements.Our results reveal that the edge-functionalization is a feasible strategy for the activity promotion;however,the basal-adsorption and basal-substitution separately suffer from the electrochemical instability and the NRR inefficiency.Specifically,MoS_(2)functionalized via edge W-substitution exhibits an exceptional activity.The energetically favored reaction pathway is through the distal pathway and a limiting potential is less than 0.20 V.Overall,this work escalates the rational design of the high-effective catalysts for nitrogen fixation and provides the explanation why the predicated catalyst have a good performance,paving the guidance for the experiments. 展开更多
关键词 Nitrogen reduction reaction Density functional theory calculations Molybdenum disulfide ELECTROCHEMISTRY CATALYST THERMODYNAMICS
下载PDF
Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery 被引量:1
3
作者 Hui Chang Lulu Zhao +4 位作者 Shan Zhao Zong-Lin Liu Peng-Fei Wang Ying Xie Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期400-410,I0010,共12页
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ... The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance. 展开更多
关键词 FeCo alloy N S co-doped carbon DFT calculation Zn-air batteries Interfacial interaction
下载PDF
Transformation of long-period stacking ordered structures in Mg-Gd-Y-Zn alloys upon synergistic characterization of first-principles calculation and experiment and its effects on mechanical properties 被引量:1
4
作者 Mingyu Li Guangzong Zhang +4 位作者 Siqi Yin Changfeng Wang Ying Fu Chenyang Gu Renguo Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1867-1879,共13页
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process... Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed. 展开更多
关键词 Mg-Gd-Y-Zn alloys Long-period stacking ordered First-principles calculations ENTHALPIES Mechanical properties
下载PDF
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method 被引量:1
5
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries 被引量:1
6
作者 Hanyan Wu Xuejie Gao +7 位作者 Xinyang Chen Weihan Li Junjie Li Lei Zhang Yang Zhao Ming Jiang Runcang Sun Xueliang Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期53-63,共11页
Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetic... Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries. 展开更多
关键词 DFT calculation dual-single-atoms of Pt-Co fast Li-sulfur batteries sulfur redox kinetics XANES analysis
下载PDF
p-d Orbital Hybridization Engineered Single-Atom Catalyst for Electrocatalytic Ammonia Synthesis 被引量:1
7
作者 Jingkun Yu Xue Yong Siyu Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期119-125,共7页
The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,... The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs. 展开更多
关键词 first-principle calculations Nitrogen reduction p-d orbital hybridization single-atom catalysts
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
8
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Composition Engineering Opens an Avenue Toward Efficient and Sustainable Nitrogen Fixation 被引量:1
9
作者 Xiaolin Wang Liming Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期313-325,共13页
In this work,we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active ... In this work,we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active sites as exemplified by diatomic metals anchored graphdiyne via the combination of hierarchical high-throughput screening,first-principles calculations,and molecular dynamics simulations.Totally 43 highly efficient catalysts feature ultralow onset potentials(|U_(onset)|≤0.40 V)with Rh-Hf and Rh-Ta showing negligible onset potentials of 0 and-0.04 V,respectively.Extremely high catalytic activities of Rh-Hf and Rh-Ta can be ascribed to the synergistic effects.When forming heteronuclears,the combinations of relatively weak(such as Rh)and relatively strong(such as Hf or Ta)components usually lead to the optimal strengths of adsorption Gibbs free energies of reaction intermediates.The origin can be ascribed to the mediate d-band centers of Rh-Hf and Rh-Ta,which lead to the optimal adsorption strengths of intermediates,thereby bringing the high catalytic activities.Our work provides a new and general strategy toward the architecture of highly efficient catalysts not only for electrocatalytic nitrogen reduction reaction(eNRR)but also for other important reactions.We expect that our work will boost both experimental and theoretical efforts in this direction. 展开更多
关键词 composition engineering strategy diatomic catalysts electrocatalytic nitrogen reduction reaction first-principles calculations graphdiyne hierarchical high-throughput screening synergistic effects
下载PDF
A real-time performance improvement method for composite time scale
10
作者 Fangmin Wang Wenlin Li +4 位作者 Hongfei Dai Chunyi Li Jianhua Zhou Shenhui Xue Bo Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期350-357,共8页
The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’perfo... The composite time scale(CTS)provides a stable,accurate,and reliable time scale for modern society.The improvement of CTS’s real-time performance will improve its stability,which strengths related applications’performance.Aiming at this goal,a method achieved by determining the optimal calculation interval and accelerating adjustment stage is proposed in this paper.The determinants of the CTS’s calculation interval(characteristics of the clock ensemble,the measurement noise,the time and frequency synchronization system’s noise and the auxiliary output generator noise floor)are studied and the optimal calculation interval is obtained.We also investigate the effect of ensemble algorithm’s initial parameters on the CTS’s adjustment stage.A strategy to get the reasonable initial parameters of ensemble algorithm is designed.The results show that the adjustment stage can be finished rapidly or even can be shorten to zero with reasonable initial parameters.On this basis,we experimentally generate a distributed CTS with a calculation interval of 500 s and its stability outperforms those of the member clocks when the averaging time is longer than1700 s.The experimental result proves that the CTS’s real-time performance is significantly improved. 展开更多
关键词 COMPOSITE time SCALE real-time performance CALCULATION INTERVAL adjustment STAGE
下载PDF
Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
11
作者 Qian Wang Da-Wei Wu +2 位作者 Guang-Hua Guo Meng-Qiu Long Yun-Peng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期194-198,共5页
Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen... Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials. 展开更多
关键词 TWO-DIMENSIONAL altermagnetic materials altermagnetism spin splitting FIRST-PRINCIPLES calculations
下载PDF
Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX_(2)(X=N,P,As)
12
作者 Yunxi Qi Jun Zhao Hui Zeng 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期487-492,共6页
Exploring novel two-dimensional(2D)valleytronic materials has an essential impact on the design of spintronic and valleytronic devices.Our first principles calculation results reveal that the Janus SWSiX_(2)(X=N,P,As)... Exploring novel two-dimensional(2D)valleytronic materials has an essential impact on the design of spintronic and valleytronic devices.Our first principles calculation results reveal that the Janus SWSiX_(2)(X=N,P,As)monolayer has excellent dynamical and thermal stability.Owing to strong spin–orbit coupling(SOC),the SWSiX_(2)monolayer exhibits a valence band spin splitting of up to 0.49 eV,making it promising 2D semiconductor for valleytronic applications.The opposite Berry curvatures and optical selection rules lead to the coexistence of valley and spin Hall effects in the SWSiX2 monolayer.Moreover,the optical transition energies can be remarkably modulated by the in-plane strains.Large tensile(compressive)in-plane strains can achieve spin flipping in the SWSiN2 monolayer,and induce both SWSiP_(2)and SWSiAs_(2)monolayers transit from semiconductor to metal.Our research provides new 2D semiconductor candidates for designing high-performance valleytronic devices. 展开更多
关键词 FIRST-PRINCIPLES CALCULATIONS two-dimensional valleytronic SPINTRONIC
下载PDF
Two-dimensional Cr_(2)Cl_(3)S_(3)Janus magnetic semiconductor with large magnetic exchange interaction and high-T_(C)
13
作者 Lei Fu Shasha Li +3 位作者 Xiangyan Bo Sai Ma Feng Li Yong Pu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期481-485,共5页
The two-dimensional(2D)Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures.Van der Waals CrCl_(3) monolayer has been experimentally proved to... The two-dimensional(2D)Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures.Van der Waals CrCl_(3) monolayer has been experimentally proved to have an in-plane magnetic easy axis and a low Curie temperature of 17 K,which will limit its application in spintronic devices.In this work,we propose a new Janus monolayer Cr_(2)Cl_(3)S_(3) based on the first principles calculations.The phonon dispersion and elastic constants confirm that Janus monolayer Cr_(2)Cl_(3)S_(3) is dynamically and mechanically stable.Our Monte Carlo simulation results based on magnetic exchange constants reveal that Janus monolayer Cr_(2)Cl_(3)S_(3) is an intrinsic ferromagnetic semiconductor with TC of 180 K,which is much higher than that of CrCl_(3) due to the enhanced ferromagnetic coupling caused by S substitution.Moreover,the magnetic easy axis of Janus Cr_(2)Cl_(3)S_(3) can be tuned to the perpendicular direction with a large magnetic anisotropy energy(MAE)of 142eV/Cr.Furthermore,the effect of biaxial strain on the magnetic property of Janus monolayer Cr_(2)Cl_(3)S_(3) is evaluated.It is found that the Curie temperature is more robust under tensile strain.This work indicates that the Janus monolayer Cr_(2)Cl_(3)S_(3) presents increased Curie temperature and out-of-plane magnetic easy axis,suggesting greater application potential in 2D spintronic devices. 展开更多
关键词 FIRST-PRINCIPLES CALCULATIONS 2D materials magnetic properties ferromagentic SEMICONDUCTOR
下载PDF
Single-atom catalysts supported on graphene/electride heterostructures for the enhanced sulfur reduction reaction in lithium-sulfur batteries
14
作者 Siyun Qi Chuanchuan Li +1 位作者 Gang Chen Mingwen Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期738-746,I0015,共10页
Single-atom catalysts(SACs)hold great promise in addressing the sluggish kinetics of the sulfur reduction reaction(SRR)in lithium-sulfur(Li-S)batteries for their unique catalytic activity and maximum atom efficiency.W... Single-atom catalysts(SACs)hold great promise in addressing the sluggish kinetics of the sulfur reduction reaction(SRR)in lithium-sulfur(Li-S)batteries for their unique catalytic activity and maximum atom efficiency.While these SACs must be dispersed on solid substrates,the underlying support is usually limited to carbon materials that have a poor ability to modulate the coordination environment and electronic structures of single atoms,and consequently their catalytic activity toward the SRR is restricted.Here we propose two-dimensional(2D)graphene/electride heterostructu res as substrates to enhance the catalytic activities of SACs for Li-S batteries.2D electrides featuring the anionic electron gas on their surface enable efficient electron transfer to SACs,which alters their electronic structures,resulting in the shifts of the d orbital and Fermi levels.This unique electronic structure decreases the filling of antibonding states such that the bonding with adsorbates at active sites is enhanced.We demonstrate the enhanced catalytic performance of SACs in terms of the Gibbs free energy of SRR and Li_(2)S dissociation.In addition,a universal descriptor for the rapid screening of SACs is established by a linear regression fitting method.This work provides a new design strategy to modulate SAC activity through electrides for Li-S batteries. 展开更多
关键词 ELECTRIDES DFT calculations Kinetics Universal descriptors Charge transfers
下载PDF
Cation-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode with high rate performance
15
作者 Long Zhang Dongsheng Yang +7 位作者 Lilei Miao Chunmeng Zhang Jiexiang Li Jiawei Wen Chunxia Wang Tiantian Cao Guoyong Huang Shengming Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期139-148,共10页
The nickel-rich layered cathode material LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)has high energy density,lower cost and is a promising cathode material currently under development.However,its electrochemical and struct... The nickel-rich layered cathode material LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)has high energy density,lower cost and is a promising cathode material currently under development.However,its electrochemical and structural stability is poor during cycling.Among the many modification methods,cation doping has been consistently proven to be an effective strategy for enhancing electrochemical performance.Herein,the NCM811 cathode material was modified by solid-phase reactions with Mg and Al doped.In addition,the corresponding mechanism of NCM811 cathode material-doped modification is explored by density functional theory(DFT)calculations,and we have extended this approach to other ternary cathode materials with different ratios and obtained universal laws.Combined with DFT calculations,the results show that Mg2+occupies the Li+site and reduces the degree of Li^(+)/Ni^(2+) mixture;Al^(3+) acts as a structural support during charging and discharging to prevent structural collapse.The electrochemical properties were tested by an electrochemical workstation and the LAND system,and the results showed that the capacity retention rate increased to varying degrees from 63.66%to 69.87%and 89.05%for NCM811-Mg and NCM811-Al at room temperature after 300 cycles,respectively.This study provides a theoretical basis and design strategy for commercializing cationic-doped modification of nickel-rich cathode materials. 展开更多
关键词 Li-ion batteries Cathode materials DOPED Electrochemical properties DFT calculation
下载PDF
Sequential Inverse Optimal Control of Discrete-Time Systems
16
作者 Sheng Cao Zhiwei Luo Changqin Quan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期608-621,共14页
This paper presents a novel sequential inverse optimal control(SIOC)method for discrete-time systems,which calculates the unknown weight vectors of the cost function in real time using the input and output of an optim... This paper presents a novel sequential inverse optimal control(SIOC)method for discrete-time systems,which calculates the unknown weight vectors of the cost function in real time using the input and output of an optimally controlled discrete-time system.The proposed method overcomes the limitations of previous approaches by eliminating the need for the invertible Jacobian assumption.It calculates the possible-solution spaces and their intersections sequentially until the dimension of the intersection space decreases to one.The remaining one-dimensional vector of the possible-solution space’s intersection represents the SIOC solution.The paper presents clear conditions for convergence and addresses the issue of noisy data by clarifying the conditions for the singular values of the matrices that relate to the possible-solution space.The effectiveness of the proposed method is demonstrated through simulation results. 展开更多
关键词 Inverse optimal control promised calculation step sequential calculation
下载PDF
Excitonic Instability in Ta2Pd3Te5 Monolayer
17
作者 Jingyu Yao Haohao Sheng +7 位作者 Ruihan Zhang Rongtian Pang Jin-Jian Zhou Quansheng Wu Hongming Weng Xi Dai Zhong Fang Zhijun Wang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第9期57-62,共6页
By systematic theoretical calculations,we reveal an excitonic insulator(EI)in the Ta_(2)Pd_(3)Te_(5)monolayer.The bulk Ta_(2)Pd_(3)Te_(5)is a van der Waals(vdW)layered compound,whereas the vdW layer can be obtained th... By systematic theoretical calculations,we reveal an excitonic insulator(EI)in the Ta_(2)Pd_(3)Te_(5)monolayer.The bulk Ta_(2)Pd_(3)Te_(5)is a van der Waals(vdW)layered compound,whereas the vdW layer can be obtained through exfoliation or molecular-beam epitaxy.First-principles calculations show that the monolayer is a nearly zero-gap semiconductor with the modified Becke–Johnson functional.Due to the same symmetry of the band-edge states,the two-dimensional polarization 2D would be finite as the band gap goes to zero,allowing for an EI state in the compound.Using the first-principles many-body perturbation theory,the GW plus Bethe–Salpeter equation calculation reveals that the exciton binding energy is larger than the single-particle band gap,indicating the excitonic instability.The computed phonon spectrum suggests that the monolayer is dynamically stable without lattice distortion.Our findings suggest that the Ta_(2)Pd_(3)Te_(5) monolayer is an excitonic insulator without structural distortion. 展开更多
关键词 MONOLAYER PRINCIPLES CALCULATIONS
下载PDF
Emerging perovskite materials for supercapacitors:Structure,synthesis,modification,advanced characterization,theoretical calculation and electrochemical performance
18
作者 Yuehua Qian Qingqing Ruan +1 位作者 Mengda Xue Lingyun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期41-70,I0003,共31页
As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r... As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction. 展开更多
关键词 PEROVSKITE Modification engineering Oxygen vacancy Theoretical calculation methodology SUPERCAPACITOR
下载PDF
From charge storage mechanism to performance:A strategy toward boosted lithium/sodium storage through heterostructure optimization
19
作者 Xiaoke Zhang Guangfa Deng +7 位作者 Mianying Huang Zhaohui Xu Jianlin Huang Xuan Xu Zhiguang Xu Maochan Li Lei Hu Xiaoming Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期112-124,I0003,共14页
Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an u... Solving the problems of low electrical conductivity and poor cycling durability in transition metal oxidesbased anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has already turned into an urgent requirement.In this paper,we successfully synthesized Co_(2)VO_(4)/Co compounds with Co-VMOF(metal-organic framework)as a sacrificial template and investigated their electrochemical mechanism in order to improve the electrochemical properties of LIBs and SIBs.The optimized heaping configuration and the existence of metallic Co catalyzed the formation of radical ions,thereby facilitating higher conductivity,shortening Li+and Na+transport paths,and providing more active sites.Co_(2)VO_(4)/Co constructed with 2-methylimidazole as a ligand showed a discharge capacity of 1605.1 mA h g^(-1)after 300 cycles at 0.1 A g^(-1)in LIB and 677.2 mA h g^(-1)in SIB.Density functional theory(DFT)calculation emphasizes the crucial role of Co_(2)VO_(4)/Co in enhancing electrode conductivity,decreasing the migratory energy barrier,and thereby strengthening electrochemical properties.This heterostructure building technique may pave the way for the development of high-performance LIBs and SIBs.Furthermore,the problem of the low first-loop coulombic efficiency faced by transition metal oxides is improved. 展开更多
关键词 Metal-organic framework HETEROSTRUCTURE Lithium-ion batteries Sodium-ion batteries DFT calculation
下载PDF
Mg/Fe site-specific dual-doping to boost the performance of cobalt-free nickle-rich layered oxide cathode for high-energy lithium-ion batteries
20
作者 Yunting Wang Gaohui Du +7 位作者 Di Han Wenhao Shi Jiahao Deng Huayu Li Wenqi Zhao Shukai Ding Qingmei Su Bingshe Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期670-679,共10页
Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from ... Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from severely detrimental structural transformation that causes rapid capacity attenuation.Herein,site-specific dual-doping with Fe and Mg ions is proposed to enhance the structural stability of LiNi0.9Mn0.1O2.The Fe3+dopants are inserted into transition metal sites(3b)and can favorably provide additional redox potential to compensate for charge and enhance the reversibility of anionic redox.The Mg ions are doped into the Li sites(3a)and serve as O_(2)^(-)-Mg^(2+)-O_(2)^(-)pillar to reinforce the electrostatic cohesion between the two adjacent transition-metal layers,which further suppress the cracking and the generation of harmful phase transitions,ultimately improving the cyclability.The theoretical calculations,including Bader charge and crystal orbital Hamilton populations(COHP)analyses,confirm that the doped Fe and Mg can form stable bonds with oxygen and the electrostatic repulsion of O_(2)^(-)-O_(2)^(-)can be effectively suppressed,which effectively mitigates oxygen anion loss at the high delithiation state.This dual-site doping strategy offers new avenues for understanding and regulating the crystalline oxygen redox and demonstrates significant potential for designing high-performance cobalt-free nickel-rich cathodes. 展开更多
关键词 Cobalt-free Layered oxide Cathode Dual dopants Density functional theory calculation
下载PDF
上一页 1 2 184 下一页 到第
使用帮助 返回顶部